加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MATH4063代做、代寫C++編程設計

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



1 MATH**3
The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
AUTUMN SEMESTER 2022-2023
MATH**3 - SCIENTIFIC COMPUTING AND C++
Coursework 1 - Released 30th October 2023, 4pm
Your work should be submitted electronically via the MATH**3 Moodle page by 12noon on Monday 20th
November (unless you have arranged an extension). Since this work is assessed, your submission must be
entirely your own work (see the University’s policy on Academic Misconduct). Submissions up to five working
days late will be marked, but subject to a penalty of 5% of the maximum mark per working day.
The marks for each question are given by means of a figure enclosed by square brackets, eg [20]. There are
a total of 100 marks available for the coursework and it contributes 45% to the module. The marking rubric
available on Moodle will be applied to each full question to further break down this mark.
You are free to name the functions you write as you wish, but bear in mind these names should be meaningful.
Functions should be grouped together in .cpp files and accessed in other files using correspondingly named
.hpp files.
All calculations should be done in double precision.
A single zip file containing your full solution should be submitted on Moodle. This zip file should contain three
folders called main, source and include, with the following files in them:
main:
• q1d.cpp
• q2c.cpp
• q3c.cpp
• q4b.cpp
source:
• vector.cpp
• dense_matrix.cpp
• csr_matrix.cpp
• linear_algebra.cpp
• finite_volume.cpp
include:
• vector.hpp
• dense_matrix.hpp
• csr_matrix.hpp
• linear_algebra.hpp
• finite_volume.hpp
Prior to starting the coursework, please download the CW1_code.zip from Moodle and extract the files. More
information about the contents of the files included in this zip file is given in the questions below.
Hint: When using a C++ struct with header files, the whole struct needs to be defined fully in the header file,
and the header file included in the corresponding .cpp file. Include guards should also be used.
MATH**3 Turn Over
2 MATH**3
In this coursework you will build a 2D finite volume solver for the following PDE boundary value problem
−𝛥w**6; + ∇ ⋅ (bw**6;) = 𝑓 (w**9;, 𝑦) ∈ 𝛺, (1)
w**6; = 𝑔, (w**9;, 𝑦) ∈ 𝜕𝛺, (2)
where 𝑓 ∶ 𝛺 → **7;, 𝑔 ∶ 𝜕𝛺 → **7; and b ∶ 𝛺 → **7;2
.
In order to solve this problem, you will first define a sparse matrix structure, then write functions to apply
the GMRES linear algebra solver and finally build and solve the linear system arising from the finite volume
approximation of (1)-(2).
1. Matrices arising from the discretisation of partial differential equations using, for example, finite volume
methods, are generally sparse in the sense that they have many more zero entries than nonzero ones.
We would like to avoid storing the zero entries and only store the nonzero ones.
A commonly employed sparse matrix storage format is the Compressed Sparse Row (CSR) format. Here,
the nonzero entries of an 𝑛 × 𝑛 matrix are stored in a vector matrix_entries, the vector column_no gives
the column position of the corresponding entries in matrix_entries, while the vector row_start of length
𝑛+1 is the list of indices which indicates where each row starts in matrix_entries. For example, consider
the following:
𝐴 =




8 0 0 2
0 3 1 0
0 0 4 0
6 0 0 7





matrix_entries = (8 2 3 1 4 6 7)
column_no = (0 3 1 2 2 0 3)
row_start = (0 2 4 5 7)
Note, in the above, C++ indexing has been assumed, i.e, indices begin at 0.
(a) In csr_matrix.hpp, define a C++ struct called csr_matrix to store a matrix in CSR format. In
addition to matrix_entries, column_no and row_start, you should store the number of rows of the
matrix explicitly.
(b) In csr_matrix.cpp, write a C++ function that will set up the matrix 𝐴 from above in CSR format.
Remember, if you are using dynamically allocated memory, then you should also have corresponding
functions that will deallocate the memory you have set up.
(c) In csr_matrix.cpp, write a C++ function that takes as input a matrix 𝐴 stored in CSR format and a
vector x and computes the product 𝐴x. The prototype for your function should be:
void MultiplyMatrixVector ( csr_matrix & matrix ,double* vector ,
double* productVector )
Hence, the input vector and the output productVector should be pointers to dynamically allocated
arrays. In particular, it should be assumed that productVector has been preallocated to the correct
size already.
(d) By setting a vector x = (4, −1, 3, 6)⊤, write a test program in q1d.cpp to compute and print to the
screen the product 𝐴x, where 𝐴 is the matrix given above.
[20 marks]
MATH**3
3 MATH**3
2. Suppose we wish to find x ∈ **7;𝑛
such that
𝐴x = b, (3)
where 𝐴 is an 𝑛 × 𝑛 matrix and b ∈ **7;𝑛
.
One algorithm for solving this problem is the (restarted) Generalised Minimal RESidual (GMRES) algorithm.
The method is too complicated to explain here, but works to quickly find approximations x𝑘 = x0 + y𝑘
where y𝑘 ∈ 𝒦𝑘 ∶= Span{𝐴q0
, 𝐴2q0 … 𝐴𝑘q0
} for 𝑘 = 1, 2, …. y𝑘 is chosen to minimise the residual
‖b − 𝐴x𝑘‖2
.
Here x0
is some initial guess vector and q0
is the normed initial residual
q0 =
b − 𝐴x0
‖b − 𝐴x0‖2
.
𝒦𝑘 is called a Krylov subspace of 𝐴.
The algorithm stops when ‖b − 𝐴x𝑘‖2 < tol for some termination tolerance tol. As the method becomes
very memory inefficient when 𝑘 is large, the method is restarted every so often and x𝑘 reset to be x0
.
An incomplete GMRES algorithm function PerformGMRESRestarted() has been written in
linear_algebra.cpp.
A key component of the GMRES algorithm is the Arnoldi iteration that seeks to find an orthonormal basis
of 𝒦𝑘. At the 𝑘th step of the iteration, the Arnoldi method constructs the following matrix decomposition
of 𝐴:
𝐴𝑄𝑘 = 𝑄𝑘+1𝐻̃
𝑘,
where the columns of 𝑄𝑘 (𝑄𝑘+1) contain the orthonormal basis of 𝒦𝑘 (𝒦𝑘+1, resp.) and 𝐻̃
𝑘 is a (𝑘+1)× 𝑘
upper Hessenberg matrix. That is, a matrix that is nearly upper triangular but has non-zero components
on the first subdiagonal.
The 𝑘th step of the Arnoldi algorithm is:
Algorithm 1 One step of the Arnoldi Iteration.
Require: 𝑘 > 0, 𝐴, 𝑄𝑘:
1: Let q𝑖 be the 𝑖th column of 𝑄𝑘.
2: Let h = {ℎ𝑖
}
𝑘+1
𝑖=1 be a vector of length 𝑘 + 1.
3: Compute q𝑘+1 = 𝐴q𝑘
4: for 𝑖 = 1, … , 𝑘 do
5: ℎ𝑖 = q𝑘+1 ⋅ q𝑖
.
6: q𝑘+1 = q𝑘+1 − ℎ𝑖q𝑖
.
7: end for
8: ℎ𝑘+1 = ‖q𝑘+1‖2
.
9: q𝑘+1 = q𝑘+1/ℎ𝑘.
10: 𝑄𝑘+1 = [𝑄𝑘, q𝑘+1].
11: return 𝑄𝑘+1 and h.
(a) In linear_algebra.cpp, write a C++ function which implements one step of the Arnoldi iteration
method defined above.
The function should have the following prototype
void PerformArnoldiIteration ( csr_matrix & matrix ,
dense_matrix & krylov_matrix , int k, double* hessenberg )
MATH**3 Turn Over
4 MATH**3
Here, matrix is 𝐴, k is the step of the iteration to perform, krylov_matrix is the matrix containing
the orthonormal basis, where each row is a basis vector. Upon entry, krylov_matrix should have 𝑘
rows and upon exit it should contain 𝑘 + 1 rows, with the new basis vector in the last row.
Finally, upon exit, hessenberg should contain h, which is the final column of 𝐻̃
𝑘. You may assume that
hessenberg has been preallocated to be of length 𝑘+1 before the call to PerformArnoldiIteration.
Your function should make use, where possible, of prewritten functions defined in dense_matrix.cpp
and vector.cpp. Your code should also make use of the matrix multiplication function from Q1.
Once you have written PerformArnoldiIteration() the GMRES function should function as intended.
Note: Storage of the basis functions in the rows of krylov_matrix, rather than in the columns,
improves efficiency of the code.
(b) In csr_matrix.cpp, write a C++ function that will read from a file a matrix already stored in CSR
format and a vector. You may assume the file structures are as in matrix1.dat and vector1.dat on
Moodle and you may use these data files to test your function.
(c) Write a test program in file q2c.cpp that will read in the matrix 𝐴 from matrix2.dat and the vector
x from vector2.dat, compute b = 𝐴x, then use PerformGMRESRestarted() with the default input
arguments to find an approximation x̂to x. At the end of the calculation, print to the screen the error
‖x − ̂ x‖2
.
[30 marks]
3. The file mesh.hpp contains a struct that defines a mesh data structure mesh for a general mesh comprising
axis-aligned rectangular cells. In particular, each cell in the mesh has an additional struct called
cell_information that contains, among other things, information about the cell neighbours. Familiarise
yourself with these data structures by looking in mesh.hpp.
mesh.cpp contains two functions that will generate meshes, they are:
• ConstructRectangularMesh() - this constructs a mesh on the rectangular domain 𝛺𝑅 = [𝑎, 𝑏] ×
[𝑐, 𝑑].
• ConstructLShapedMesh() - this constructs a mesh on the L-shaped domain 𝛺𝐿 = 𝛺𝑅\𝛺𝐶, where
𝛺𝐶 = [(𝑎 + 𝑏)/2, 𝑏] × [(𝑐 + 𝑑)/2, 𝑑].
(a) In finite_volume.cpp, write a C++ function that will create the storage for a matrix 𝐴 in CSR format
and a RHS vector F required for a cell-centred finite volume method for solving (1)-(2). You should
follow the procedure outlined in the Unit 6 lecture notes. As one of the inputs, your function should
take in a variable of type mesh.
(b) In csr_matrix.cpp, write a C++ function that will output to the screen a matrix stored in CSR format
in the same style as in matrix1.dat.
(c) In Q3c.cpp, write a program that will ask the user to supply the number of cells in each coordinate
direction of a rectangular mesh, sets up the mesh using ConstructRectangularMesh() then calls the
function from part (a) to set up the corresponding matrix and finally prints it to the screen using the
function from part (b).
[30 marks]
MATH**3
5 MATH**3
4. (a) In finite_volume.cpp, write a function that takes in a mesh, uses the function from Q3(a) to construct
𝐴 and F, then populates it with the correct entries to solve problem (1)-(2) using the cell-centred finite
volume method, as outlined in the Unit 6 notes. The function should also take as input the functions
𝑓(w**9;, 𝑦), b(w**9;, 𝑦) and the Dirichlet boundary function 𝑔(w**9;, 𝑦).
(b) In Q4b.cpp, write a main program to ask the user to select from the following problems and supply
the number of cells in each coordinate direction.
1. • Rectangular Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = 0.
2. • L-shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 8𝜋2
cos(2𝜋w**9;) cos(2𝜋𝑦);
• 𝑔(w**9;, 𝑦) = cos(2𝜋w**9;) cos(2𝜋𝑦);
• b = 0.
3. • Rectangular Mesh - 𝑎 = −1, 𝑏 = 1, 𝑐 = −1 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = (10, 10)⊤.
4. • L-Shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 0;

𝑔(w**9;, 𝑦) = {
1, w**9; = 0, 0.25 < 𝑦 < 0.75,
0, otherwise;
• b = (
50𝑦
√w**9;2+𝑦2
,
−50w**9;
√w**9;2+𝑦2
)

.
The code should then set up the linear system arising from the finite volume discretisation and solve
the system
𝐴uℎ = F
using PerformGMRESRestarted().
Finally, print to the screen the maximum value of uℎ.
Hint: Once you have computed uℎ you can output it to together with the mesh to a file using
OutputSolution() in mesh.cpp. plot_solution.py can then be used to plot the solution in Python.
Note, if you are unable to get the iterative solver from Q2 working, then you may create the finite volume
matrix 𝐴 as if it were a dense matrix (i.e store all the zero entries) and use the function
PerformGaussianElimination() from dense_matrix.cpp to solve the system of equations. This will incur
a small penalty. Note, an illustration of the use of PerformGaussianElimination() can be found in the
main program inside gaussian_elimination_test.cpp.
[20 marks]
MATH**3 End

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP9021代做、代寫Python程序語言
  • 下一篇:代寫CSE 30程序、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲高清极品| 日韩欧美视频| 亚洲一区二区三区中文字幕在线观看| 日本综合久久| 一本色道久久综合一区| 日韩一区二区三区精品视频第3页| 久久福利在线| 蜜桃一区二区三区在线观看| 国产99久久久国产精品成人免费| 国产欧美日韩在线观看视频| 久久亚洲国产精品尤物| 免费不卡在线视频| 国精品一区二区| 婷婷视频一区二区三区| 日日摸夜夜添夜夜添精品视频| 欧美激情电影| 91成人国产| 精品久久电影| 日韩在线成人| a一区二区三区亚洲| 欧美在线高清| 日韩理论电影大全| 亚洲一区二区网站| 在线视频观看日韩| 成人在线视频中文字幕| 欧美久久一区二区三区| 国产成人精品一区二三区在线观看| 国产毛片一区| 欧美精品自拍| 激情五月***国产精品| 东京久久高清| 一区二区三区视频免费视频观看网站 | 电影91久久久| 日本不卡在线视频| 国产69精品久久久久按摩| 爱啪啪综合导航| 蜜臀av一区二区| 久久99伊人| 亚洲欧美网站| 国产亚洲亚洲| 在线午夜精品| 亚洲综合不卡| 亚洲欧美久久久| 一本一道久久综合狠狠老精东影业| 欧美日韩一二| 国模 一区 二区 三区| 久久久久在线| 久久综合成人| 国产综合久久| 欧洲福利电影| 红桃视频国产一区| 欧美日韩四区| 国产精品免费看| 久热re这里精品视频在线6| av成人天堂| 石原莉奈一区二区三区在线观看 | 伊人久久亚洲| 美女精品久久| 秋霞欧美视频| 久久精品国产亚洲夜色av网站 | 亚洲伦伦在线| 欧美激情自拍| 国产精品一区二区美女视频免费看 | 欧美亚洲一级| 亚洲青青一区| 国产区精品区| 99久久香蕉| 91精品一区二区三区综合在线爱| 伊人春色之综合网| 伊人色**天天综合婷婷| 香蕉久久夜色精品国产| 日本一区二区高清不卡| 校园春色亚洲| 久久精品女人| 国产精久久久| 97色成人综合网站| 99久久精品网| 日韩午夜一区| 神马午夜在线视频| 欧美激情啪啪| 国产探花一区在线观看| 日韩视频在线直播| 久久亚洲精品中文字幕蜜潮电影| 欧美日韩国产欧| 视频在线不卡免费观看| 国产一区二区高清在线| 亚洲国产三级| 亚洲日产av中文字幕| 成人在线超碰| 日韩视频一区| 免费成人在线电影| 麻豆精品国产传媒mv男同| 欧美日本成人| 久久男女视频| 手机精品视频在线观看| 91成人抖音| 国产精品亚洲综合在线观看| 超碰97久久| av成人毛片| 日韩欧美三区| 日本在线视频一区二区三区| 欧美福利一区| 激情亚洲影院在线观看| 久久综合另类图片小说| 果冻天美麻豆一区二区国产| 日韩亚洲在线| 国产a亚洲精品| 日韩aaa久久蜜桃av| 亚洲午夜一级| 亚洲精品mv| 欧美国产中文高清| 国产精品av久久久久久麻豆网| segui88久久综合9999| 日本女人一区二区三区| 超碰地址久久| 成人激情电影在线| 日韩高清在线不卡| 国内精品免费| 蜜臀av亚洲一区中文字幕| 日本久久久久| 亚洲三级av| 免费观看在线色综合| 日本中文一区二区三区| 超碰精品在线观看| 91视频综合| 亚洲影视一区| 激情91久久| 麻豆一区二区三| 久久人人88| av成人在线播放| 国语一区二区三区| 黄色在线网站噜噜噜| 国产日韩欧美一区二区三区| 红桃视频国产一区| 国产精品国码视频| 1024成人| 日韩精品国产精品| 99久久激情| 久久精品国产色蜜蜜麻豆| 国产精品成人自拍| 日韩三区免费| 激情小说一区| 素人一区二区三区| 欧美视频亚洲视频| 日本综合字幕| 国产精品一区二区中文字幕| 日韩激情免费| 综合激情久久| 日韩中文影院| 欧美日韩导航| 国产极品久久久久久久久波多结野| 成人h动漫精品一区二区器材| 日韩欧美二区| 精品国产精品国产偷麻豆| 免费高潮视频95在线观看网站| 草莓视频一区二区三区| 热久久久久久| 欧美 日韩 国产精品免费观看| 国产日韩精品视频一区二区三区| 成人短片线上看| 97久久中文字幕| 色婷婷热久久| 精品国内自产拍在线观看视频| ww久久综合久中文字幕| 亚洲五月婷婷| 亚洲人成毛片在线播放女女| 亚洲一区国产一区| 精品伊人久久| 欧洲成人一区| 不卡中文一二三区| 国产中文字幕一区二区三区| 鲁鲁在线中文| 99久久亚洲精品| 日本v片在线高清不卡在线观看| 欧美日韩少妇| 久久99精品久久久野外观看| 九色成人搞黄网站| 欧美亚洲国产激情| 96sao精品免费视频观看| 成人观看网址| 99久久精品费精品国产| 欧美精品aa| 日韩一区二区在线免费| 99精品在线免费在线观看| 综合精品久久| 午夜久久中文| 伊人青青综合网| theporn国产在线精品| 日韩精品视频网| 操人在线观看| 欧美日韩国产免费观看视频| 亚洲涩涩av| 一区二区日本视频| 丝袜亚洲另类丝袜在线| 精品国产99| 国产一区二区三区免费观看在线| 在线最新版中文在线| 91成人观看| 黄色欧美在线| 国产日产精品_国产精品毛片|