加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    麻豆国产精品视频| 日韩在线一区二区三区| 欧美黄在线观看| 欧美国产美女| 在线日韩欧美| 日韩福利视频导航| 国产欧美在线| 超碰成人av| 99热精品在线| 色88888久久久久久影院| 伊人精品视频| 国产精品丝袜在线播放| 91精品国产自产观看在线 | 奇米狠狠一区二区三区| 另类一区二区| 激情国产在线| 可以看av的网站久久看| 国产一区二区三区四区三区四| 日韩av在线发布| 99精品美女视频在线观看热舞| 香蕉久久一区| 亚洲欧美小说色综合小说一区| 婷婷成人基地| 久久久精品网| 欧美视频亚洲视频| 亚洲另类春色校园小说| 午夜性色一区二区三区免费视频| 亚洲伦乱视频| 国产极品在线观看| 日韩主播视频在线| 一本色道久久综合亚洲精品不卡| 伊人春色精品| 你懂的在线观看一区二区| 日韩电影在线一区二区| 国产乱码精品一区二区三区亚洲人| 日韩国产欧美一区二区三区| 成人国产一区| 另类图片综合电影| av资源中文在线| 麻豆久久精品| 亚洲欧美成人综合| 亚洲欧美不卡| 狂野欧美一区| 久久久久久久高潮| 中文字幕视频精品一区二区三区| 韩国一区二区三区视频| 亚洲一区二区日韩| 国产精品成人**免费视频| 欧美区日韩区| 国产亚洲观看| 亚洲深夜福利在线观看| 亚洲精品动态| 国产日韩中文在线中文字幕| 亚洲精品一区国产| 精品国产乱码久久久| 欧洲亚洲一区二区三区| 99久久久久| 国产精品99久久| 日韩一级不卡| 国产精品不卡| 欧美特黄aaaaaaaa大片| 日韩在线高清| a∨色狠狠一区二区三区| 国产在线美女| 精品国产一区二区三区不卡蜜臂 | 免费看亚洲片| 蜜桃av一区二区三区电影| 黄色aa久久| 国产精品久久久久77777丨| 久久精品天堂| 国产精品一区免费在线| 亚洲欧美日本伦理| 清纯唯美亚洲综合一区| 136国产福利精品导航网址| 99在线精品免费视频九九视| 丝袜诱惑制服诱惑色一区在线观看| 欧美wwwww| 欧美亚洲综合视频| 欧美激情在线| 日日狠狠久久偷偷综合色| 91综合久久爱com| 欧洲美女日日| 日韩综合在线| 国产成人久久精品麻豆二区| 麻豆一区二区在线| 亚洲免费专区| 国产一区清纯| 老牛影视一区二区三区| 欧美不卡高清一区二区三区 | 日韩影院精彩在线| 成人国产精品入口免费视频| 欧美日韩亚洲一区| 白嫩白嫩国产精品| 亚洲激情婷婷| 不卡亚洲精品| 国产欧美亚洲精品a| 久久久国产亚洲精品| 亚洲综合精品| 久久精品免费看| 日产国产高清一区二区三区| 欧美先锋资源| 青青青免费在线视频| 欧美激情1区2区| 国产福利资源一区| 日韩中文字幕不卡| 国产日韩精品视频一区二区三区 | 欧美黄污视频| 欧美日韩一区二区三区在线电影 | 日本美女一区| 国产精品一区二区99| 你懂的在线观看一区二区| 蜜乳av一区二区| 亚洲人metart人体| 99久久影视| 亚洲成人不卡| 日韩av影院| 91久久在线| 一区二区三区福利| 久久精品国产精品亚洲红杏| 日韩三区在线| 日韩在线你懂的| 亚洲精品1区| 国产日韩欧美一区| 欧美顶级毛片在线播放| 蜜臀av一区二区在线免费观看 | 99re8这里有精品热视频8在线| 亚洲欧洲日本一区二区三区| 国产第一亚洲| 精品久久中文| 中文字幕高清在线播放| 日韩av电影天堂| 免费成人你懂的| 国产成人久久| 亚洲欧美清纯在线制服| 亚洲网站三级| 婷婷亚洲五月色综合| 国产精品久久久久久久久久妞妞 | 玖玖精品在线| 久久精品九九| 欧美a级在线观看| 婷婷综合国产| 密臀av在线播放| 中文字幕一区二区三区四区久久| 国产精品久久久久久久| 国产一区二区电影在线观看| 快she精品国产999| 亚洲成人一品| 久久久久久网| 美女精品视频在线| 男人的天堂免费在线视频| 国内毛片久久| 成人在线观看免费播放| 99久精品视频在线观看视频| 久久精品国产免费| 在线精品视频在线观看高清| 国内综合精品午夜久久资源| 欧美日韩国产高清| 成人自拍视频| 成人激情视频| 福利欧美精品在线| 久久精品国产在热久久| 天天av综合| 怕怕欧美视频免费大全| 久久电影tv| 精品国产乱码| 麻豆专区一区二区三区四区五区| 伊人成年综合电影网| 国产一区二区三区探花| 欧美激情欧美| 成人在线免费观看网站| 国产一区二区三区成人欧美日韩在线观看 | 久久久免费毛片| 免费精品视频最新在线| 日本一区精品视频| 91九色综合| 欧美午夜不卡影院在线观看完整版免费| 亚洲区第一页| 爽好多水快深点欧美视频| 秋霞一区二区| 久久精品影视| 蜜臀久久久久久久| 国产在线播放精品| 欧美日本精品| 日韩伦理视频| 一本一道久久a久久精品蜜桃| 韩国三级大全久久网站| 手机看片久久| 久久xxxx| 欧美a一欧美| 欧美成人精品午夜一区二区| 日韩理论在线| 99在线精品免费视频九九视| 激情五月综合婷婷| 日本美女视频一区二区| 青青青免费在线视频| 婷婷久久综合| 成人综合久久| 国产精品国码视频| 97成人超碰| 久久久久久一区二区|