加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    伊人亚洲精品| 先锋a资源在线看亚洲| 日日夜夜综合| 亚洲五月婷婷| 91精品麻豆| 国产精品国产三级国产在线观看| 先锋影音国产精品| 亚洲天堂一区二区| 国产国产精品| 麻豆精品视频在线观看| 午夜一级久久| 成人午夜网址| 欧美日韩一卡| 免费成人av在线| 精品伊人久久久| 亚洲精品免费观看| 高清毛片在线观看| 清纯唯美亚洲经典中文字幕| 在线精品观看| 麻豆网站免费在线观看| 久久精品国产清高在天天线| av日韩一区| 美女精品在线观看| 大型av综合网站| 久久国产日韩欧美精品| 91九色精品| 久久精品一级| 中文av一区| 欧洲成人一区| 亚洲欧美日韩国产一区二区| 成人午夜亚洲| 色呦哟—国产精品| 亚洲大全视频| 精品国内自产拍在线观看视频 | 天天综合网天天| jlzzjlzz亚洲女人| 国产精品qvod| 怕怕欧美视频免费大全| 国产欧美一区二区色老头 | 欧美影院视频| 国产欧美一区二区三区国产幕精品| 91久久午夜| 日韩精品欧美激情一区二区| 国产一区二区三区91| 久久精品五月| 色老太综合网| 国产精品久久观看| 欧美日韩四区| 久久国产一二区| 免费观看亚洲视频大全| 国产精品成人**免费视频| 久久精品国内一区二区三区 | 中文字幕这里只有精品| 久久麻豆精品| 国产精品nxnn| 精品一级视频| 麻豆极品一区二区三区| 日本不良网站在线观看| 亚洲欧洲一级| 天天揉久久久久亚洲精品| 久久青草久久| 精品国产一区探花在线观看 | 美女免费视频一区| 日韩在线不卡| 在线天堂新版最新版在线8| 国产女优一区| 99成人在线| re久久精品视频| 欧美搞黄网站| 亚洲第一偷拍| 偷偷www综合久久久久久久| 日本精品影院| 极品国产人妖chinesets亚洲人妖 激情亚洲另类图片区小说区 | 红杏视频成人| 99精品免费| 久久精品免费看| 久久综合导航| 欧美日韩一区二区三区四区在线观看| 欧美在线三区| 日本欧美加勒比视频| 亚洲精一区二区三区| 欧美日韩18| 欧美sm一区| 9999精品| 色综合色综合| 91另类视频| 六月丁香婷婷久久| 国产日韩欧美一区二区三区| 日韩成人免费电影| 国产精品男女| 亚洲精品网址| 母乳一区在线观看| 亚洲国产综合在线观看| 日本午夜精品一区二区三区电影| 中文字幕乱码亚洲无线精品一区| 亚洲精品一级二级三级| 久久wwww| 欧美日韩水蜜桃| 欧美+亚洲+精品+三区| 蜜臀av在线播放一区二区三区| av资源中文在线| 久久精品国内一区二区三区| 麻豆精品精品国产自在97香蕉| 电影一区中文字幕| 国产日产精品_国产精品毛片| 精品99在线| 最新日韩av| 日韩大片在线| 综合激情在线| 视频欧美一区| 精品在线91| 美女网站视频一区| 国产精品啊啊啊| 66精品视频在线观看| 极品中文字幕一区| 久草免费在线视频| 亚洲国产1区| 一区二区中文| 久久精品一区二区不卡| 99在线观看免费视频精品观看| 日韩精品一区第一页| 韩日一区二区| 国产欧美日韩视频在线| 精品国产aⅴ| 欧洲视频一区| 新版的欧美在线视频| 久久中文资源| 国产精品黄网站| 六月丁香综合| 日本特黄久久久高潮| 国产精品1区| 一精品久久久| 国产一区二区久久久久| 极品尤物一区| 免费看欧美美女黄的网站| 老鸭窝一区二区久久精品| 51亚洲精品| 亚洲一区一卡| 一区二区在线| 国产精品7m凸凹视频分类| 毛片在线网站| 香蕉大人久久国产成人av| 99精品福利视频| 福利精品在线| 91欧美极品| 蜜桃av一区二区三区电影| 78精品国产综合久久香蕉| 午夜精品福利影院| 欧美日中文字幕| 久久亚洲精品爱爱| 91精品国产乱码久久久久久久| 三级在线观看视频| 凹凸av导航大全精品| 日韩在线看片| 好吊妞视频这里有精品| 成人啊v在线| 欧美交a欧美精品喷水| 少妇视频一区| 亚洲欧美日本国产| 91在线亚洲| 欧美三级第一页| 久久精品97| 天天操综合520| 久久精品国产网站| 欧美先锋资源| 综合天天久久| 伊人久久亚洲热| 国产剧情在线观看一区| 亚洲欧洲一区| 亚洲精品自拍| 欧美专区18| 西野翔中文久久精品国产| 日韩中文字幕亚洲一区二区va在线 | 亚洲精品乱码| 美女网站久久| 日韩一二三区在线观看| av在线私库| 国产在线播放精品| 国产超碰精品| 激情综合网站| 国产高清日韩| av最新在线| 国产成人tv| 国产日韩亚洲欧美精品| 亚洲综合二区| 日产欧产美韩系列久久99| 色网在线免费观看| 青青一区二区三区| 日韩高清不卡一区二区三区| 国产精品视频久久一区| 色妞ww精品视频7777| 日本免费一区二区三区四区| 中日韩免视频上线全都免费| 精品久久福利| 色综合久久网| 菠萝蜜一区二区| 精品视频在线播放一区二区三区 | 不卡在线一区| 婷婷亚洲精品| 日本色综合中文字幕|