加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做EF5070、代寫c/c++編程設計

時間:2023-11-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    最近国产精品视频| 福利电影一区| 1204国产成人精品视频| 极品少妇一区二区三区| 日本一本不卡| 三级不卡在线观看| av动漫精品一区二区| 在线亚洲激情| 美腿丝袜亚洲三区| 日韩深夜影院| 久久亚洲精品伦理| 欧美激情视频一区二区三区在线播放| 日韩不卡一区二区| av在线播放一区| 精品久久久久久久久久久aⅴ| 日韩精品一二区| 国产一区二区三区免费观看在线| 欧美不卡高清| 日韩欧美在线精品| 日日夜夜精品视频天天综合网| 蜜臀久久久99精品久久久久久| 日本精品影院| 祥仔av免费一区二区三区四区| 一本色道久久综合亚洲精品不| 9999久久久久| 国产亚洲第一伦理第一区| 男人天堂欧美日韩| 国产一区二区区别| 久久精品xxxxx| 欧美在线观看视频一区| 激情中国色综合| 久久一二三区| 99热这里只有精品8| 久久看片网站| 青青草精品视频| 欧美日韩日本国产亚洲在线| 欧美日本在线| 精品久久久网| 国产一区一一区高清不卡| 精品久久精品| 视频一区中文字幕精品| 国产精品久一| 亚洲香蕉久久| 欧美激情成人| 亲子伦视频一区二区三区| 国产日韩在线观看视频| 亚洲97av| 国产成人调教视频在线观看| 一区二区三区国产精华| 久久在线精品| 久久精品国产成人一区二区三区 | 日韩天堂在线| 美女视频亚洲色图| 永久免费精品视频| 秋霞一区二区| av不卡一区| 精品视频久久| 人人精品亚洲| 亚洲高清激情| 欧美 亚欧 日韩视频在线 | 国产一区二区三区亚洲| 超碰成人在线观看| 动漫视频在线一区| 蜜臀av一区| 久久亚洲成人| 1024精品久久久久久久久| 亚洲精品99| 日韩午夜黄色| 超碰精品在线观看| 国产福利资源一区| 久久精品成人| 极品少妇一区二区三区| 欧美日韩精品| 免费精品99久久国产综合精品| 色男人天堂综合再现| 亚洲插插视频| 亚洲精品一二三区区别| 日韩午夜电影| 狠狠躁少妇一区二区三区| 激情欧美丁香| 性xxxx欧美老肥妇牲乱| 午夜综合激情| av免费不卡国产观看| 青草综合视频| 一区二区毛片| 国产成人一区| 欧美成人专区| 黄色亚洲大片免费在线观看| 久久国产精品毛片| 亚洲一级少妇| 日日夜夜免费精品| 日韩精品社区| 99久久九九| 美女诱惑一区| 99久久久国产精品免费调教网站| 亚洲国产精品一区制服丝袜| 青青在线精品| 麻豆91在线看| 日韩成人视屏| 国产精品欧美在线观看| 91精品尤物| 欧美+日本+国产+在线a∨观看| 美女网站久久| 99精品国产在热久久下载| 97色婷婷成人综合在线观看| 97精品久久| 亚洲一区二区三区四区五区午夜 | 久久久久久久久久久久久久久久久久久久 | 色88888久久久久久影院| 亚洲欧美日本国产专区一区| 日韩精选视频| 国产一区二区三区日韩精品| 成人午夜av| av手机在线观看| 99综合99| 激情婷婷久久| 神马久久资源| 亚洲精华一区二区三区| 欧美1区3d| 婷婷综合六月| 婷婷精品在线| 一区二区亚洲精品| 国产成人精品一区二区三区免费| 亚洲图区在线| 在线综合视频| 国产日韩一区二区三区在线播放| 久久一级大片| 欧美综合国产| 麻豆精品蜜桃视频网站| 青青久久av| 香蕉成人av| 91欧美极品| 国产精品粉嫩| 日韩激情av在线| 国产精品日韩| 999精品视频在线观看| 国产综合欧美| 国产激情欧美| 精品国产91| 国产成人精品亚洲日本在线观看| 亚洲大片精品免费| 午夜亚洲视频| 伊人久久大香线蕉综合影院首页| 亚洲二区精品| 国产精品成人国产| 女一区二区三区| 亚洲精品aa| 欧美在线导航| 欧美91在线|欧美| 99国产**精品****| 国产一区影院| 激情文学一区| 日本不卡123| 欧美日韩国产一区二区三区不卡 | 国产精品成人3p一区二区三区 | 日韩最新在线| 手机在线电影一区| 18国产精品| 欧美aa在线观看| 欧美日韩导航| 欧美一区在线看| 欧美不卡高清| 成人精品在线| 蜜桃久久av一区| 少妇精品在线| 国产一区二区色噜噜| 欧美ab在线视频| 亚洲一级淫片| 日韩影院免费视频| 日韩精品视频在线看| 成人福利视频| 成人三级视频| 伊人久久综合网另类网站| 蜜臀精品久久久久久蜜臀| 日韩1区2区3区| av在线日韩| 亚洲精品久久| 亚洲精品亚洲人成在线观看| 中文字幕人成乱码在线观看| 欧美精品中文| 亚洲国产91| 久久亚洲欧美| 欧美黑人巨大videos精品| 欧美a级理论片| 蜜臀精品一区二区三区在线观看 | 日韩电影在线视频| 亚洲视频综合| 亚洲精品无吗| 欧美视频精品| 亚洲免费网站| 欧美久久精品| 国产激情综合| 国产综合色区在线观看| 国产电影一区二区在线观看| 日韩成人免费电影| 久久精品二区亚洲w码| 日韩在线a电影| 激情欧美丁香| 美国十次综合久久| 欧美精品不卡|