加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫DAT 560M、代做R編程語言

時(shí)間:2023-12-09  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 1 -
DAT 560M: Big Data and Cloud Computing
Fall 2023, Mini B
Homework #4
INSTRUCTIONS
1. This is an individual assignment. You may not discuss your approach to solving these
questions with anyone, other than the instructor or TA.
2. Please include only your Student ID on the submission.
3. The only allowed material is:
a. Class notes
b. Content posted on Canvas
c. Utilize ONLY the codes we practice. Anything beyond will not get any point!
4. You are not permitted to use other online resources.
5. The physical submission is due by the next lab.
6. There will be TA office hours. See the schedule on Canvas.
ASSIGNMENT
In this assignment, we are going to practice Spark on a file named loans.csv and the file is located
in our database. In case you don’t have the file, you can get it from the dataset folder on the server.
http://server-ip/dataset/loans.csv
This dataset has information about loans distributed to poor and financially excluded people
around the world by a company called Kiva. There are a few number of columns in the dataset
and we would like to do an analysis on that by pyspark. Please answer each question and provide
a screenshot.
Part ** Initialize Spark (5 pts)
** Start the PySpark engine and load the file. This homework is a little bit complex and its
better that we assign more resources. Then, when assigning your engine, you can assign
all available CPU cores on your machine to the Spark to perform faster. To do that, just
simply put local[*] instead of local (look at the following screenshot). If it crashes or
doesn’t work properly, you are more than welcome to go back to the normal initialization
process. (2 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 2 -
2- Get to know the dataset and do a preliminary examination (for example type of columns,
summary, …) (2 pts)
3- Here, we have two identifier for the country of the loan receiver, country, and
country_code and so one is enough. Then please drop country_code. (1 pts)
Part 2- Data analysis (50 pts)
4- Find the three most loan awarded sector when the loan amount is larger than 1000. (5 pts)
5- For the top sector you found in Q4, list 6 most used activities. (5 pts)
6- Find the number of given loans per year. For that, use the year from posted_time. You
may add a new column called “year”. (5 pts)
7- Using SQL syntax, list the number of loans per sector in decreasing order where the
countries are the 3 top countries in terms of the number of received loans. (10 pts)
8- Find the top 20 countries in terms of the total loan amount they have received where the
use of the loan include the word “stock”. You may use SQL. (5 pts)
9- Do a wordcount on the “use” column. For that, consider all lower case. If you can, it’s
great to remove stopwords and then do the wordcount. It’s OK if you don’t know how to
do so. (10 pts)
10- Group the loans into 5 categories. If the loan amount is equal or larger than 50000, call it
“super large”. If less but larger or equal to 10000, call it “large”. If less but larger or
equal to 5000, call it “medium”. If less but larger or equal to 1000, call it “small”. If less,
call it “tiny”. Then, find the number of given loans to each category per gender. For
gender, only consider “male” or “female”. (10 pts)
Part 3- Feature engineering (10 pts)
1** Let’s find how many people are involved in each loan application. To find it out, look at
gender column. You can see sometimes it is one value, and sometimes more than one.
Count it for each loan and add it to the dataframe. (10 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 3 -
Part 4- Machine learning (35 pts)
12- Now let’s focus only on Retail, Agriculture, and Food sectors the remove the rest of the
rows (10 pts).
13- We like to predict the loan_amount based on sector, country, term_in_months, year, and
the new attribute you added in Q11 and drop the rest of the columns. (5 pts)
14- Prepare your data to do a prediction task. We are interested in predicting the loan amount
based on the rest of the features. (10 pts)
15- Perform a regression task for and find the Mean Squared Error and R-square of the model
(80% training, 20% testing) (10 pts). 
請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CSCI 2122代寫、代做C++設(shè)計(jì)程序
  • 下一篇:代寫ISOM 2007、代做 Python 程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    综合久久伊人| 福利片一区二区| 精品美女久久| 国产精品二区不卡| 久久中文在线| 91精品推荐| 视频在线日韩| 99精品在免费线中文字幕网站一区 | 日本免费一区二区三区视频| 欧美日韩三级电影在线| 国产日韩精品视频一区二区三区 | 国内视频精品| 欧美日韩一区二区综合| 日本久久久久| 国产精品qvod| 日韩精品影院| 视频小说一区二区| 香蕉成人在线| 精品国产精品| 成人在线免费av| 美女午夜精品| 日韩不卡免费高清视频| 国产成人福利av| 欧美天堂在线| 99精品一区| 日本午夜精品久久久| 欧美日韩国产在线一区| 亚洲毛片一区| 久久亚洲风情| 久久丁香四色| 日本在线视频一区二区| 精品久久电影| 日日摸夜夜添夜夜添国产精品 | 亚洲成人一区| 久久影院资源站| 丝袜亚洲另类欧美| 日韩视频一二区| 欧美一级二级视频| 加勒比久久综合| 国产欧美另类| 天堂а√在线最新版中文在线| 99久久婷婷国产综合精品青牛牛| 日韩一区二区三区免费视频| 色88888久久久久久影院| 欧美激情福利| 亚洲自啪免费| 99久热这里只有精品视频免费观看| 福利一区二区免费视频| 五月激情综合| 精品中文在线| 欧美xxxx性| 每日更新成人在线视频| 1204国产成人精品视频| 一区二区三区高清视频在线观看| 美女网站一区| 亚洲人亚洲人色久| 日本欧美在线| 视频一区国产视频| 精品欧美午夜寂寞影院| 日韩av午夜| 国产suv精品一区| 久久国产生活片100| av成人激情| 精品久久美女| 国语精品视频| 久久精品国产福利| 日韩影院精彩在线| 久久亚洲国产| 日产欧产美韩系列久久99| 四虎4545www国产精品| 国产精品美女| 91精品啪在线观看国产18| 国产精品一区二区三区四区在线观看| 亚洲天堂免费电影| 美女诱惑一区| 美女久久久久| 国产成人夜色高潮福利影视| 国产不卡精品在线| 欧美在线日韩| 日韩一区电影| 蜜臀va亚洲va欧美va天堂| 国产综合激情| 久久精品福利| 综合视频一区| 国产中文精品久高清在线不| 99精品国产一区二区青青牛奶 | 亚洲美洲欧洲综合国产一区| 91精品日本| 国产精品亚洲人成在99www| 另类一区二区| 日韩成人影音| 午夜欧美激情| 国产理论在线| 玖玖视频精品| 欧美日韩免费观看一区=区三区| 免费日韩一区二区三区| 日本成人手机在线| 国产欧美日韩在线一区二区| 日本不卡不码高清免费观看| 91精品xxx在线观看| 国产精品精品| 男人的天堂亚洲在线| 午夜日韩在线| 91九色精品| japanese国产精品| 欧美一级精品片在线看| 欧美综合精品| 久久激情av| 成人羞羞在线观看网站| av综合网站| 成人h动漫免费观看网站| 日韩在线视频一区二区三区| 日韩一级电影| 九九九九九九精品任你躁| 欧洲精品99毛片免费高清观看 | 日本欧美韩国一区三区| 一区二区三区导航| 99精品视频网| 日本不卡视频一二三区| 国产精品久久国产愉拍| 肉肉av福利一精品导航| 久久在线精品| 日本不卡一区二区三区高清视频| 国产精品综合色区在线观看| 日韩精品免费视频人成| 亚洲美女色禁图| 在线欧美激情| 国产一区二区三区四区五区传媒| 亚洲丝袜美腿一区| 亚洲区小说区图片区qvod按摩| 亚洲三级精品| 欧美福利在线播放网址导航| 麻豆精品在线| 久久久久亚洲| 夜夜嗨一区二区| 国产精品国产一区| 日韩久久一区二区三区| 日欧美一区二区| 国产精一区二区| 日韩一区二区三区精品| 久久久人人人| 9久re热视频在线精品| 国产精品二区不卡| 青青国产精品| 国产精品分类| 日韩av网站在线观看| 蜜臀av一区| 国产视频一区在线观看一区免费| 四季av一区二区凹凸精品| 欧产日产国产精品视频| 另类人妖一区二区av| 亚洲图区在线| 久久婷婷丁香| 美女爽到呻吟久久久久| 日韩经典一区| 国产精品一区二区三区四区在线观看| 日韩一区二区三区色| 亚洲福利国产| 国产不卡人人| 在线一区免费| 欧美va亚洲va日韩∨a综合色| 一本一本久久| 日本精品在线中文字幕| 亚洲乱码视频| 亚洲精品aⅴ| 一区二区亚洲精品| 免费毛片b在线观看| 日日噜噜夜夜狠狠视频欧美人 | 911亚洲精品| 羞羞答答成人影院www| 日本不卡免费高清视频在线| 日本成人超碰在线观看| 欧美视频在线观看| 麻豆久久婷婷| 麻豆精品一区二区三区| 亚洲一区二区三区中文字幕在线观看| 亚洲成人日韩| 国产激情久久| 精品视频国内| 亚洲在线免费| 久久一区二区三区四区五区| 香蕉成人app| 老鸭窝亚洲一区二区三区| 99精品国产福利在线观看免费| 1204国产成人精品视频| 国产农村妇女毛片精品久久莱园子| 亚洲精品tv| 亚洲精品不卡在线观看| 亚洲一区二区三区免费在线观看 | 免费高清在线一区| 日韩国产一区二| 青青一区二区三区| 成人一级福利| 怕怕欧美视频免费大全| 亚洲免费观看| 在线精品在线| jizzjizz欧美69巨大| 欧美一区视频| 99久久这里只有精品| 日韩啪啪电影网|