加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本综合精品一区| 久久亚洲视频| 欧洲大片精品免费永久看nba| 日本黄色精品| 成人另类视频| 国产美女视频一区二区| 亚洲精品555| 日韩精品一级中文字幕精品视频免费观看| 91成人午夜| 一区二区三区在线观看免费| 日韩欧美一区二区三区免费看| 精品日产免费二区日产免费二区| 69精品国产久热在线观看| 欧美日韩综合| а√天堂资源国产精品| 日韩精品一二三四| 91精品成人| 久久国产欧美| 日本在线一区二区三区| 2019中文亚洲字幕| 日本在线不卡视频| av在线一区不卡| 青青青免费在线视频| 性欧美xxxx大乳国产app| 激情综合久久| 视频小说一区二区| 激情亚洲另类图片区小说区| 国产精品手机在线播放| 久久久久观看| 国产欧美在线| ww久久综合久中文字幕| 在线天堂新版最新版在线8| 一本色道88久久加勒比精品| 欧美性感美女一区二区| 精品美女视频| 日本电影一区二区| 国产成人一二| 国产精品久久久久av蜜臀| 99精品国产高清一区二区麻豆| 黄色亚洲在线| 久久久久久久久成人| 亚洲日产av中文字幕| 9999在线精品视频| 国产美女精品视频免费播放软件| 欧美国产日本| 中文字幕av亚洲精品一部二部| 欧美一区视频| 麻豆精品国产91久久久久久| 日韩精品三区四区| 日欧美一区二区| 国产精品a久久久久| 亚洲国产精品第一区二区| 久久精品天堂| 日韩和欧美一区二区三区| 麻豆91在线播放| 日本特黄久久久高潮| 欧美日韩综合| 国产精品自拍区| 亚洲精品国产setv| 日韩一二三区在线观看| 成人h动漫精品一区二区器材| 国产精品久av福利在线观看| 美女主播精品视频一二三四| 色婷婷综合久久久久久| 99久久综合| 女人香蕉久久**毛片精品| 国产精品普通话对白| 免播放器亚洲一区| 亚洲第一av| 久久精品一区二区国产| 亚洲欧美在线综合| 亚洲小说图片视频| 丁香一区二区| 波多野结衣一区| 久久xxxx| 婷婷综合六月| 亚洲精品美女| 日韩电影网1区2区| 99成人在线视频| 日韩视频一区| 裤袜国产欧美精品一区| 国产日韩欧美一区在线| 国内不卡的一区二区三区中文字幕| 少妇一区二区视频| 精品精品久久| 在线综合亚洲| 美女福利一区二区三区| 一区二区三区福利| 亚洲另类春色校园小说| 精品高清久久| 国产视频一区三区| 国产在线|日韩| 国产精品欧美一区二区三区不卡 | 99久久99久久精品国产片桃花 | 在线高清欧美| 日韩欧美中文字幕一区二区三区| 久久婷婷麻豆| 国产精品国产三级国产在线观看| 国产69精品久久久久按摩| 亚洲一区导航| 精品免费在线| 久久亚洲色图| 青青草国产成人99久久| 欧美三区美女| 免费看的黄色欧美网站| 久久精品国产精品亚洲精品| 精品视频一区二区三区在线观看| 国产99久久精品一区二区300| 成人在线电影在线观看视频| 六月丁香婷婷色狠狠久久| 色悠久久久久综合先锋影音下载| 女同性一区二区三区人了人一| 日韩在线观看| 亚洲区小说区| 亚洲女同另类| 精品福利在线| 国内精品麻豆美女在线播放视频| 久久香蕉精品| 97久久精品一区二区三区的观看方式| eeuss鲁片一区二区三区| 国产一级一区二区| 欧美aaa在线| 农村少妇一区二区三区四区五区| 免费成人你懂的| 99亚洲男女激情在线观看| 99国产精品免费视频观看| 欧美裸体视频| 精品视频在线一区| 蜜臂av日日欢夜夜爽一区| 综合天堂av久久久久久久| 久久亚洲精品中文字幕蜜潮电影| 三上悠亚国产精品一区二区三区 | 黑人精品一区| 亚洲自拍电影| 免费日本视频一区| 天海翼亚洲一区二区三区| 亚洲一区激情| 亚洲久草在线| 最新亚洲视频| 亚洲在线资源| 免费看的黄色欧美网站 | 国产精东传媒成人av电影| 日韩深夜视频| 国产精品网址| 黑人一区二区三区| 欧美日韩中字| 日韩国产高清影视| 在线国产一区| 亚洲综合色站| 人人狠狠综合久久亚洲| 亚洲另类av| 欧美第一视频| 色婷婷精品视频| 男女男精品网站| 男女精品网站| 亚洲理论电影| 三级在线看中文字幕完整版| 91嫩草精品| 丰满少妇一区| 欧美伦理影院| 国产精一区二区| av综合电影网站| 久久精品123| 亚洲精品在线二区| 天堂av在线一区| 日韩一区二区三区精品| 91精品xxx在线观看| 久久婷婷蜜乳一本欲蜜臀| 欧美aaa在线| 日韩主播视频在线| 亚洲一级大片| 日本午夜精品久久久久| 一区在线视频观看| 久久99精品久久久久久园产越南| 国模精品视频| 久久精品国产大片免费观看| 欧美黄免费看| 黄色亚洲网站| 欧美美女一区| 日本一区二区乱| 麻豆精品视频在线观看免费| 久久福利精品| 国产精品15p| 最新国产精品| 中国色在线日|韩| 九九久久婷婷| 亚洲啊v在线免费视频| 久久在线精品| 毛片在线网站| 91成人网在线观看| 中文字幕亚洲在线观看| 老司机午夜精品| 中文字幕在线视频网站| 欧美一二区在线观看| 亚洲精品动态| 乱一区二区av| 欧美色网一区| 亚洲欧美日韩国产一区| 成人久久一区| 久久三级中文|