加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲女娇小黑人粗硬| 日韩伦理视频| 91精品国产自产精品男人的天堂| 国产综合色激情| 久久av最新网址| 精品久久97| 国产探花一区| 亚洲国产第一| 四虎成人av| 国产高清久久| 精品人人人人| 午夜精品影视国产一区在线麻豆| 一区二区精品| 黑人巨大精品| 另类图片国产| 欧美不卡高清| 国产 日韩 欧美 综合 一区| 国产精品一区高清| 久久精品网址| 国产 日韩 欧美一区| 亚洲欧美久久久| 激情综合亚洲| 都市激情亚洲欧美| 日韩激情一区二区| a一区二区三区亚洲| 国产欧美丝祙| 青青久久精品| 在线看片国产福利你懂的| 9色国产精品| 91成人超碰| 欧美亚洲在线日韩| 精品在线网站观看| 粉嫩久久久久久久极品| 日韩精品导航| 久久最新网址| 国产欧美亚洲精品a| 欧美精品aa| 日本女人一区二区三区| 日日欢夜夜爽一区| 欧美影视一区| 久久精品国产精品亚洲红杏| 中文在线中文资源| 日本欧美国产| 久久久久久自在自线| 视频一区二区三区入口| 三级亚洲高清视频| 日韩中文字幕不卡| 麻豆9191精品国产| 老司机午夜精品视频| 免费久久99精品国产自在现线| 在线亚洲观看| 毛片一区二区| 国产精品久久占久久| 黄色在线观看www| 成人av免费电影网站| 亚洲精品mv| 日韩精品三区| 美女一区二区视频| 麻豆中文一区二区| 一区二区蜜桃| 奇米色欧美一区二区三区| 国模精品一区| 亚洲国产aⅴ精品一区二区| 国产精品玖玖玖在线资源| 精品理论电影在线| 欧美日韩中文一区二区| 亚洲精品小说| 亚洲资源av| 亚洲女同av| 日韩色性视频| 综合激情视频| 亚洲肉体裸体xxxx137| 国产精品色在线网站| 国产综合欧美| 亚洲综合精品| 超碰aⅴ人人做人人爽欧美| 777午夜精品电影免费看| 日韩精品三区四区| 国产乱码精品一区二区亚洲| 911精品国产| 欧美亚洲国产激情| 免费在线欧美视频| 韩国女主播一区二区| 亚洲毛片一区| 日产国产欧美视频一区精品| 精品国产一区探花在线观看 | 久久神马影院| 欧美日韩视频| 黑森林国产精品av| 青青草精品视频| 精品中文视频| 免费观看久久av| 色综合天天爱| 日韩国产欧美三级| 日韩电影一区二区三区| 国产一区二区三区四区老人| 美女诱惑一区| 99精品免费| 精品三级久久久| 女生裸体视频一区二区三区 | 日本在线中文字幕一区二区三区| 亚洲久久一区二区| 欧美三级视频| 久久高清一区| 久久精品久久综合| 日韩精品一区二区三区中文在线| 激情六月综合| 日韩不卡免费高清视频| 欧美视频二区欧美影视| 秋霞影院一区二区三区| 色中色综合网| 亚洲天堂一区二区三区四区| 麻豆精品少妇| 国产在线观看www| 亚洲欧洲专区| 欧美99久久| 亚洲二区av| 99久久婷婷国产综合精品青牛牛| 亚洲在线网站| 欧美激情五月| 蜜桃成人av| 国产成人精品一区二区三区免费| 日韩av一级电影| 亚洲免费影院| 91精品一久久香蕉国产线看观看 | 久久精品动漫| 日韩一区二区在线| 精品国产亚洲一区二区三区在线| 国产美女精品| 欧美日韩一区二区三区四区在线观看| 色天天色综合| 国产一区二区高清在线| 91精品丝袜国产高跟在线| 久久亚洲一区| 久久97视频| 免费观看成人鲁鲁鲁鲁鲁视频| 亚洲综合专区| 一本久道久久综合狠狠爱| 亚洲乱码视频| 亚洲欧洲一级| 97精品资源在线观看| 国产婷婷精品| 国产成人av| 男女男精品网站| 亚洲人成网77777色在线播放| 另类国产ts人妖高潮视频| 国产精品色婷婷在线观看| 国产偷自视频区视频一区二区| 亚洲青青一区| 老司机精品久久| 亚洲人成网www| 中文字幕在线高清| 给我免费播放日韩视频| 中文另类视频| 美女一区二区在线观看| 亚洲国产mv| 午夜国产欧美理论在线播放 | 精品国产一区二区三区不卡蜜臂| 日韩在线观看不卡| 成人久久久久| 国产精品a级| 国产亚洲激情| 日韩区欧美区| 四虎国产精品永久在线国在线| 欧美午夜精品一区二区三区电影| 青娱乐精品在线视频| 黄色av日韩| 亚洲盗摄视频| 日韩理论电影大全| 欧美亚洲激情| 欧美成人一级| 天堂8中文在线最新版在线| 91精品久久久久久久久久不卡| 亚洲美女色禁图| 免费成人av资源网| 久久av国产紧身裤| 理论电影国产精品| 丝袜国产日韩另类美女| 操欧美女人视频| 国产日韩欧美一区在线| 久久国产成人| 美日韩黄色大片| 国产精品2区| 97成人超碰| 欧美特黄a级高清免费大片a级| 日韩在线你懂的| 精品自拍视频| 久久性色av| 久久精品卡一| 国际精品欧美精品| 久久精品国产第一区二区三区| 免费精品视频| 久久精品99久久无色码中文字幕| 亚洲图片小说区| a屁视频一区二区三区四区| 亚洲综合国产| 99精品综合| 日韩综合一区二区三区| 亚洲日韩成人| 欧美aa免费在线|