加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BUSI1125代做、代寫Java/python程序語言

時間:2023-12-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BUSI1125 Softwares and Tools for Data Analytics
INDIVIDUAL ASSIGNMENT
Autumn 2023/24

This individual assignment carries 100% of the total marks of this module.

Students are required to download 2 different datasets, and analyse each dataset using a
randomly assigned data analytics software.


Dataset 1 (poverty): Eradicating extreme poverty for all people everywhere by 2030 is a
pivotal goal of the 2030 Agenda for Sustainable Development. It has been recognised that
ending poverty must go hand-in-hand with strategies that build economic growth and address
a range of social needs including education, health, social protection, and job opportunities,
while tackling climate change and environmental protection. As a data analyst your objective
is to conduct an exploratory analysis to better understand the relationships/associations
between the level of income (outcome) and the selected socio-economic factors (features).

Dataset 1, extracted from the World Bank Development Indicators, includes the following
variables for 151 countries.

Variable Name Description
country Name of the country
region Region of the country
comp_edu Compulsory education, duration (years)
female_labour Ratio of female to male labour force participation rate (%)
agri_value_added Agriculture, forestry, and fishing, value added (% of GDP)
political_stability Political Stability and Absence of Violence/Terrorism: Estimated index
income_group Income group classification by the World Bank based on gross national
income (GNI) per capita (High income, Upper-middle income, Lower-
middle income, Low income)
Dataset 1 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/poverty/main/poverty.csv


Dataset 2 (wage): One of the other UN Sustainable Development Goals is about promoting
inclusive and sustainable economic growth, employment and decent work for all (Decent work
and Economic Growth). Decent work means opportunities for everyone to get work that is
productive and delivers a fair income, security in the workplace and social protection for
families, better prospects for personal development and social integration. As a data analyst
your objective is to conduct an exploratory analysis to better understand the
relationships/associations between the individual’s wage (outcome) and the selected
demographic factors (features).

Dataset 2, extracted from The United States National Longitudinal Surveys, includes the
following variables for 935 individuals.

Variable Name Description
wage Average weekly earnings (in US$)
hours Average weekly working hours
exper Years of working experience
age Age in years
marital Marital status (Married, Single)
gender Gender (Male, Female)
education Level of education (High School, College, Graduate, Post-Graduate)

Dataset 2 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/wage/main/wage.csv



Assignment requirements
Students are required to import the dataset and analyse with the assigned software (R or
Python). For descriptive and exploratory analytics and interpretations, students are required
to:

1. check data quality issues (missing values, data entry errors, inconsistencies, etc.),
perform necessary data cleansing, and briefly explain your data cleaning strategy.
2. identify the type of variables, provide appropriate summary statistics (all measures of
location and dispersion and frequencies) of each variables with appropriate
visualisations and interpretations.
3. identify the objectives of analytics based on the given dataset and scenario and identify
the relevant/appropriate relationships/associations between the outcome and feature
variables, conduct exploratory analysis with appropriate visualisations, and present
and interpret the analyses (based on DIKW pyramid).
4. write up a data analytics report with clear and effective communication.

The 1500-word assignment should include the following two sub-sections.
 Section 1: Report of descriptive and exploratory analytics of Dataset 1 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)
Section 2: Report of descriptive and exploratory analytics of Dataset 2 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)


Students are also required to submit R-scripts and Jupyter Notebook files via Moodle
submission box.

Deadline Date for Submission of Coursework
Your coursework needs to be submitted electronically via the Module Moodle page. See the
Student Services website and the programme handbook for further details of this process.
The deadline for coursework submission is 3:30pm on Wednesday, 27th of December
2023. Late submission will attract marks deduction penalty unless an extension has been
approved by Student Services. Please familiarise yourself with the extenuating circumstances
policy and process for submitting a claim.

Five marks will be deducted for each working day (or part thereof) if coursework is submitted
after the official deadline without an extension having been obtained. Except in exceptional
circumstances, late submission penalties will apply automatically unless a claim for
extenuating circumstances is made before the assessment deadline.


Coursework Submission Requirements:
A maximum word count of the assignment is 1500 words and must be adhered to.
The penalty for exceeding this limit is a five mark deduction for exceeding up to 300
words, 10 marks deduction for exceeding between 301 and 500 words, and 15
marks reduction for exceeding over 501 words.
The actual word count of the assignment must be stated by the student on the first
page (cover sheet) of the assignment.
The overall word count does include citations and quotations.
The overall word count does not include the references or bibliography at the
end of the coursework.
 The word count does not include figures and tables with numeric values and the titles
of figure and table. Any statement, interpretation, and explanation presented in
a figure or a tabular form will be included in the overall wordcount,
Appendices (mostly supporting materials that are not directly related to the assignment
and will not be considered in marking) are not included in the overall word count.
Students should prepare and submit their coursework assessments via Moodle in
the following format:
Font: Verdana 11 point
Spacing: 1.5 spaced
Margins: Normal (2.5 cm)
Referencing: Harvard citation style

Plagiarism will not be tolerated. Please consult the Business School Undergraduate Student
Handbook for more guidelines on how to present and submit your essays. It is the strong
advice of the Business School that you should avoid plagiarism by engaging in ethical and
professional academic practice.
In accordance with the University’s Quality Manual, in normal circumstances, marked
coursework and associated feedback will be returned to you within 15 working days of the
published submission deadline. Therefore, students submitting work before the published
deadline should not have an expectation that early submission will result in earlier return of
work. Where coursework will not be returned within 15 working days for good reason (for
example in circumstances where a student has been granted an extension, illness of module
convenor, or lengthy pieces of coursework), students will be informed of the timescale for the
return of the coursework and associated feedback.
Additional circumstances where coursework may not be returned within 15 working days for
good reason can include the University closure dates. Therefore, where this applies, you will
be informed in advance of the date coursework feedback will be provided to you.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:公認口碑最好的十大莆田微商,推薦十個知名的莆田鞋商家
  • 下一篇:代寫公式指標 代做選股公式 請人做股標指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    色婷婷成人网| 一本久道久久综合婷婷鲸鱼| 国产精品久久久久久模特| 一本色道88久久加勒比精品| 日韩电影一区二区三区四区| 欧美亚洲福利| 亚洲一区二区免费看| 精品成av人一区二区三区| 欧美精品二区| 日韩一区二区三区免费视频| 国产一区导航| 特黄特色欧美大片| 日本天堂一区| 日本视频免费一区| 日韩免费在线| 日韩在线一区二区| 欧美福利在线| 欧美中文一区| 婷婷精品在线| 久久夜色电影| 国产成人精品一区二区三区在线 | 91精品一区二区三区综合在线爱| 999久久久国产999久久久| 久久av影院| 日韩一区二区在线| 男男视频亚洲欧美| 婷婷久久国产对白刺激五月99| aaa国产精品视频| 国产精品手机在线播放| 日韩和欧美一区二区| 五月激情久久| 欧美wwwww| 欧美综合国产| 99综合精品| 伊人青青综合网| 久久亚洲国产| 欧美sss在线视频| 国产主播性色av福利精品一区| 亚洲资源网站| 日韩啪啪网站| 日韩电影一区二区三区四区| 亚洲毛片在线免费| 国内精品久久久久久久97牛牛| 国产精品99久久久久久董美香 | 香蕉国产精品偷在线观看不卡| 欧美日韩高清| 欧美~级网站不卡| 精品一区免费| 欧美91视频| 欧美日韩激情| 日韩香蕉视频| 999在线观看精品免费不卡网站| 欧美日韩三级| 伊人久久亚洲影院| 亚洲激情另类| 免费观看30秒视频久久| 奶水喷射视频一区| 水野朝阳av一区二区三区| 亚洲资源av| 色婷婷色综合| 五月激情久久| 日韩成人综合网| 久久精品一区二区三区中文字幕| 麻豆精品视频在线观看视频| 美女视频网站黄色亚洲| 国产精品久久国产愉拍| 亚洲日本久久| 国产精品免费99久久久| 日韩成人一区二区| 精品国产美女| 免费国产自久久久久三四区久久| 日韩天堂av| 国产精品久久久久9999赢消| 日韩久久综合| 欧美在线首页| 国产不卡av一区二区| 日韩av不卡在线观看| 欧美交a欧美精品喷水| 91精品久久久久久久蜜月| 欧美69视频| 蜜桃视频在线一区| 亚洲精品国产嫩草在线观看| 美女尤物国产一区| 欧美精品91| 激情五月综合婷婷| 亚洲国产专区| 欧美wwwww| 久久国产麻豆精品| 国产一区二区观看| 欧美三级午夜理伦三级在线观看| 免费成人网www| 免费一级欧美片在线观看| 日韩在线第七页| 亚洲日本国产| 一区二区免费| 99国产精品视频免费观看一公开| 国产精品毛片一区二区在线看| 成人在线中文| 国产探花一区| 久久精品国产清高在天天线| 夜夜嗨网站十八久久 | 久久伊人亚洲| 精品视频在线播放一区二区三区| 蜜臀av一区| 欧美独立站高清久久| 国产一区二区色噜噜| 久久99国内| 今天的高清视频免费播放成人| 免费高清在线视频一区·| 国产日韩欧美一区在线 | 久久精品国产成人一区二区三区 | 亚洲区综合中文字幕日日| 亚洲精品一二三**| 狠色狠色综合久久| ww久久综合久中文字幕| 亚洲欧洲av| 婷婷亚洲最大| 精品捆绑调教一区二区三区| 国产欧美大片| 五月天久久777| 粉嫩av一区二区三区四区五区| 日韩黄色片在线观看| 亚洲作爱视频| 日本午夜一区二区| 91精品国偷自产在线电影 | 东京久久高清| 欧美激情777| 国产精品毛片aⅴ一区二区三区 | 欧美黄免费看| 久久日文中文字幕乱码| 黄色在线观看www| 亚洲资源网你懂的| 免费日韩精品中文字幕视频在线| 亚久久调教视频| 久久精品高清| 日本久久久久| 成人精品天堂一区二区三区| 国产中文在线播放| 亚洲第一福利社区| 米奇777在线欧美播放| 欧美精品二区| 欧美精品一线| 影音先锋久久久| 婷婷亚洲最大| 麻豆国产精品官网| 好吊一区二区三区| 91精品国产一区二区在线观看| 欧美 亚欧 日韩视频在线| 久久精品99国产精品日本| 牲欧美videos精品| 国产乱码精品| 狠狠色丁香久久综合频道| 亚洲网色网站| 欧美中文日韩| 精品视频成人| 欧美精品高清| 久久国产精品免费精品3p| a屁视频一区二区三区四区| 99久久久久| 欧美aaaaaa午夜精品| 一区视频在线| 国产欧美日韩影院| av在线私库| 久久久久国产一区二区| 日日夜夜一区二区| 伊人影院久久| 日韩激情网站| 成人午夜亚洲| 狠狠爱综合网| 精品麻豆剧传媒av国产九九九| 超级碰碰久久| 久久蜜桃精品| 99综合久久| 国产精品久久久久蜜臀| 国产精品久久久网站| 国产精品麻豆成人av电影艾秋| 精品日韩毛片| 日本亚洲不卡| 国产精品亲子伦av一区二区三区| 加勒比久久综合| 婷婷综合电影| 欧美黄色网络| 麻豆亚洲精品| 欧洲精品一区| 亚洲伊人精品酒店| 热三久草你在线| 亚洲欧美偷拍自拍| 日韩黄色免费网站| 国产精品主播| 欧美a级成人淫片免费看| 加勒比视频一区| 国产精选久久| www.久久.com| 狂野欧美一区| 1024日韩| 一区二区三区视频播放| 国产精品chinese| 人人鲁人人莫人人爱精品| 91久久亚洲| 精品国产精品|