加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 Scene Recognition

時間:2024-01-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2 (Group) – Scene Recognition
Brief
This is a group coursework: please work in teams of four people.
Due date: Wednesday 10th January, 16:00.
Development data download: training.zip in the coursework (CW) folder
Testing data download: testing.zip in the CW folder
Required files: report.pdf; code.zip; run1.txt; run2.txt; run3.txt
Credit: 25% of overall module mark
Overview
The goal of this project is to introduce you to image recognition. Specifically, we will examine the
task of scene recognition starting with very simple methods -- tiny images and nearest neighbour
classification -- and then move on to techniques that resemble the state-of-the-art.
This coursework will run following the methodology used in many current scientific benchmarking
competitions/evaluations. You will be provided with a set of labelled development images from
which you are allowed to develop and tune your classifiers. You will also be provided with a set of
unlabelled images for which you will be asked to produce predictions of the correct class.
Details
You will need to write software that classifies scenes into one of 15 categories. We want you to
implement three different classifiers as described below. You will then need to run each classifier
against all the test images and provide a prediction of the class for each image.
Data
The training data consists of 100 images for each of the 15 scene classes. These are arranged in
directories named according to the class name. The test data consists of 2985 images. All the
images are provided in JPEG format. All the images are grey-scale, so you don't need to consider
colour.
Objective measure
The key classification performance indicator for this task is average precision; this is literally the
proportion of number of correct classifications to the total number of predictions (i.e. 2985).
Run conditions
As mentioned above, you need to develop and run three different classifiers. We'll refer to the
application of a classifier to the test data as a "run".
Run #1: You should develop a simple k-nearest-neighbour classifier using the "tiny image" feature.
The "tiny image" feature is one of the simplest possible image representations. One simply crops
each image to a square about the centre, and then resizes it to a small, fixed resolution (we
recommend 16x16). The pixel values can be packed into a vector by concatenating each image
row. It tends to work slightly better if the tiny image is made to have zero mean and unit length.
You can choose the optimal k-value for the classifier.
Run #2: You should develop a set of linear classifiers (an ensemble of 15 one-vs-all classifiers)
using a bag-of-visual-words feature based on fixed size densely-sampled pixel patches. We
recommend that you start with 8x8 patches, sampled every 4 pixels in the x and y directions. A
sample of these should be clustered using K-Means to learn a vocabulary (try ~500 clusters to
start). You might want to consider mean-centring and normalising each patch before
clustering/quantisation. Note: we're not asking you to use SIFT features here - just take the pixels
from the patches and flatten them into a vector & then use vector quantisation to map each patch
to a visual word.
Run #3: You should try to develop the best classifiers you can! You can choose whatever feature,
encoding and classifier you like. Potential features: the GIST feature; Dense SIFT; Dense SIFT in a
Gaussian Pyramid; Dense SIFT with spatial pooling (commonly known as PHOW - Pyramid
Histogram of Words), etc. Potential classifiers: Naive bayes; non-linear SVM (perhaps using a linear
classifier with a Homogeneous Kernel Map), ...
Run prediction format
The predictions for each run must be written to a text file named runX.txt (where X is the run
number) with the following format:
For example:
<image_name> <predicted_class>
<image_name> <predicted_class>
<image_name> <predicted_class>
...
0.jpg tallbuilding
1.jpg forest
2.jpg mountain
3.jpg store
4.jpg store
5.jpg bedroom
...
Restrictions
• You are not allowed to use the testing images for anything other than producing the final
predictions They must not be used for either training or learning feature encoding.
The report
The report must be no longer than 4 sides of A4 with the given Latex format for CW2, and must be
submitted electronically as a PDF. The report must include:
• The names and ECS user IDs of the team members
• A description of the implementation of the classifiers for the three runs, including information on
how they were trained and tuned, and the specific parameters used for configuring the feature
extractors and classifiers. We expect that your "run 3" section will be considerably longer than the
descriptions of runs 1 & 2.
• A short statement detailing the individual contributions of the team members to the coursework.
What to hand in
You need to submit to ECS Handin the following items:
• The group report (as a PDF document in the CVPR format same as CW2; max 4 A4 sides, no
appendix)
• Your code enclosed in a zip file (including everything required to build/run your software and to
train and use your classifiers; please don't include binaries or any of the images!)
• The run prediction files for your three runs (named "run1.txt", "run2.txt" and "run3.txt").
• A plain text file listing the user ids (e.g. xx1g20) of the members of your team; one per line.
Marking and feedback
Marks will be awarded for:
• Successful completion of the task.
• Well structured and commented code.
• Evidence of professionalism in implementation and reporting.
• Quality and contents of the report.
• The quality/soundness/complexity of approach used for run 3.
Marks will not be based on the actual performance of your approach (although you can expect to
lose marks if runs 1 and 2 are way off our expectations or you fail to follow the submission
instructions). We will open the performance rankings for run 3. !"#$
Standard ECS late submission penalties apply.
Individual feedback will be given to each team covering the above points. We will also give overall
feedback on the approaches taken in class when we announce the winner!
Useful links
• Matlab
o Image processing toolbox tutorials
o Recommended: VLFeat
§ Example of using VLFeat to perform classification
o Linear and non-linear SVMs
• Python
o numpy, PIL, sklearn (Scikit-learn), OpenCV, etc.
• C and C++
o OpenCV
o Recommended: VLFeat
o Example of using VLFeat to perform classification (Note this code is Matlab, but most of the
functionality is available in the C/C++ API)
• Java
o Recommended: OpenIMAJ
§ Chapter 12 of the tutorial deals with image classification
o BoofCV
Questions
If you have any problems/questions, use the Q&A channel on Teams 

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP3173 23F&#160;代寫、代做 C++設計程序
  • 下一篇:代寫文華策略 代寫開拓者量化交易 代編金字塔公式
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    9999在线精品视频| 在线成人av观看| av一级亚洲| 日韩国产精品久久| 春色校园综合激情亚洲| 欧美日一区二区| 九色精品蝌蚪| 欧美激情日韩| 欧美亚洲黄色| 欧美gay男男猛男无套| 婷婷成人综合| 成人黄色av网址| 国产高清亚洲| 日韩综合一区二区| 香蕉成人av| 日韩精品一区第一页| 免费久久精品| 加勒比中文字幕精品| 日韩成人一区二区三区在线观看| 卡一卡二国产精品| 韩国女主播一区二区| 香蕉久久国产| 黄色av日韩| 九九久久婷婷| 玖玖玖免费嫩草在线影院一区| 亚洲警察之高压线| 亚洲网站三级| 高清亚洲高清| 51一区二区三区| 午夜av不卡| 三上亚洲一区二区| 玖玖精品视频| 羞羞答答国产精品www一本 | 欧美一区免费| 88xx成人免费观看视频库| 超碰高清在线| 蜜臀av一区二区在线观看 | 成人精品动漫一区二区三区| 亚洲宅男一区| 国际精品欧美精品| 欧美男gay| 日韩不卡手机在线v区| 国产亚洲高清在线观看| 最新亚洲国产| av一级久久| 你懂的网址国产 欧美| 欧美区亚洲区| 国产美女视频一区二区| 亚洲综合中文| 国产欧美69| 亚洲瘦老头同性70tv| 欧美三级一区| 亚洲国产精品嫩草影院久久av| 国产精品一区免费在线 | 欧美日韩在线精品一区二区三区激情综合| 国产精品久久久久久麻豆一区软件 | 日韩一区二区三区精品| 国内精品久久久久久久影视简单| 麻豆国产精品777777在线| 影音先锋亚洲精品| 伊人久久大香| 欧美日韩爱爱| 福利在线一区| 久久亚洲专区| 在线视频精品| 国产精品久久久久久影院8一贰佰 国产精品久久久久久麻豆一区软件 | 亚洲精选国产| 国产伦精品一区二区三区视频 | 在线日韩一区| 91精品福利| 久久综合中文| 欧美中文字幕精在线不卡| 欧美一区精品| 亚洲三级在线| caoporn成人免费视频在线| 蜜臀av一区| 亚洲视频大全| 日韩成人av电影| 日韩精品视频网| 亚洲区小说区| 精品福利久久久| 亚洲激情精品| 不卡一二三区| 麻豆成人av在线| 天堂俺去俺来也www久久婷婷 | 欧美日韩三级| 激情aⅴ欧美一区二区欲海潮| 亚洲国产尤物| 国产亚洲高清一区| 中文字幕亚洲影视| 性欧美xxxx大乳国产app| 亚洲国产尤物| 成人免费观看49www在线观看| 国产精品一区二区中文字幕| 国产丝袜一区| 午夜宅男久久久| 色999久久久精品人人澡69| 欧美久久亚洲| 亚洲无线视频| 热三久草你在线| 一区二区三区网站| 色88888久久久久久影院| 老鸭窝亚洲一区二区三区| 成人在线视频免费| 日韩成人伦理电影在线观看| 亚洲福利免费| 久久夜夜操妹子| 日本欧美三级| 在线午夜精品| 国产九九精品| 波多野结衣的一区二区三区| 久久精品国产99久久| 国产一区导航| 欧美国产视频| 一区视频网站| 亚洲深夜影院| 美日韩一级片在线观看| 中文字幕视频精品一区二区三区| 在线 亚洲欧美在线综合一区| 韩国精品主播一区二区在线观看 | 在线观看亚洲精品福利片| 国产成人福利av| 日韩影院在线观看| 中文字幕一区二区三三| 国产综合欧美| 少妇高潮一区二区三区99| 超碰精品在线观看| 中国色在线日|韩| 国产一区二区三区日韩精品| 亚洲激情成人| 欧美日本一区| 黄色成人91| 欧美全黄视频| 亚洲高清资源在线观看| 日韩亚洲国产免费| 91精品国产91久久久久久黑人| 深夜在线视频| 7m精品国产导航在线| 成人一级毛片| 91p九色成人| 日本中文在线一区| 群体交乱之放荡娇妻一区二区| 午夜亚洲视频| 欧美国产综合| 日韩图片一区| 亚洲精品影视| 99视频一区| 国产一区二区三区免费观看在线| 日韩一级精品| 国产精品三级| 美国三级日本三级久久99| 国产毛片一区二区三区| 日本大胆欧美人术艺术动态| 亚洲美女15p| 玖玖在线播放| 人人狠狠综合久久亚洲婷婷| 日韩免费福利视频| 久久久久久久久丰满| 一二三区精品| 精品一区欧美| 亚洲最大黄网| 免费成人在线网站| 久久久久国产精品一区二区| 久久r热视频| 9国产精品午夜| av在线播放一区| 极品裸体白嫩激情啪啪国产精品| 在线观看亚洲| 日韩精品一二区| 欧美色一级片| 国产欧美日韩一级| 亚洲最黄网站| 久久综合偷偷噜噜噜色| 日本国产欧美| 九九综合久久| 欧美美乳视频| 国产三级一区| 香蕉久久a毛片| 国产调教精品| 中文字幕日韩一区二区不卡| 国产精品久久久久久| 色天天色综合| 国语精品视频| 亚洲精品大全| 亚洲一区网站| 久久久国产精品一区二区中文| 一区二区电影| 成人日韩在线| 亚洲一区网站| 99精品全国免费观看视频软件| 欧美精选一区二区三区| 日韩欧美激情| 久久综合影视| 91精品精品| 亚洲精品小区久久久久久| 亚洲ww精品| 男人的j进女人的j一区| 99久久久久久中文字幕一区| 日韩大胆成人| 麻豆国产精品777777在线|