加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CSC420編程代寫、c/c++,Java程序代做

時間:2024-01-23  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Intro to Image Understanding (CSC420)
Assignment 1
Due Date: Jan 26th, 2024, 11:59:00 pm
Total: 120 marks
General Instructions:
• You are allowed to work directly with one other person to discuss the questions. However, you are still expected to write the solutions/code/report in your own words; i.e.
no copying. If you choose to work with someone else, you must indicate this in your
assignment submission. For example, on the first line of your report file (after your
own name and information, and before starting your answer to Q1), you should have
a sentence that says: “In solving the questions in this assignment, I worked together
with my classmate [name & student number]. I confirm that I have written the solutions/code/report in my own words”.
• Your submission should be in the form of an electronic report (PDF), with the answers
to the specific questions (each question separately), and a presentation and discussion
of your results. For this, please submit a file named report.pdf to MarkUs directly.
• Submit documented codes that you have written to generate your results separately.
Please store all of those files in a folder called assignment1, zip the folder and then
submit the file assignment1.zip to MarkUs. You should include a README.txt
file (inside the folder) which details how to run the submitted codes.
• Do not worry if you realize you made a mistake after submitting your zip file; you can
submit multiple times on MarkUs.
Part I: Theoretical Problems (60 marks)
[Question 1] Convolution (10 marks)
[1.a] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
1 −2 ≤ n ≤ 2
0 otherwise
(1)
[1.b] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
2 − |n| −2 ≤ n ≤ 2
0 otherwise
(2)
1
[Question 2] LTI Systems (15 marks)
We define a system as something that takes an input signal, e.g. x(n), and produces an
output signal, e.g. y(n). Linear Time-Invariant (LTI) systems are a class of systems that
are both linear and time-invariant. In linear systems, the output for a linear combination of
inputs is equal to the linear combination of individual responses to those inputs. In other
words, for a system T, signals x1(n) and x2(n), and scalars a1 and a2, system T is linear if
and only if:
T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
Also, a system is time-invariant if a shift in its input merely shifts the output; i.e. If T[x(n)] =
y(n), system T is time-invariant if and only if:
T[x(n − n0)] = y(n − n0)
[2.a] (5 marks) Consider a discrete linear time-invariant system T with discrete input signal
x(n) and impulse response h(n). Recall that the impulse response of a discrete system
is defined as the output of the system when the input is an impulse function δ(n), i.e.
T[δ(n)] = h(n), where:
δ(n) = (
1, if n = 0,
0, else.
Prove that T[x(n)] = h(n) ∗ x(n), where ∗ denotes convolution operation.
Hint: represent signal x(n) as a function of δ(n).
[2.b] (5 marks) Is Gaussian blurring linear? Is it time-invariant? Make sure to include your
justifications.
[2.c] (5 marks) Is time reversal, i.e. T[x(n)] = x(−n), linear? Is it time-invariant? Make
sure to include your justifications.
[Question 3] Polynomial Multiplication and Convolution (15 marks)
Vectors can be used to represent polynomials. For example, 3rd-degree polynomial (a3x
3 +
a2x
2 + a1x + a0) can by represented by vector [a3, a2, a1, a0].
If u and v are vectors of polynomial coefficients, prove that convolving them is equivalent to
multiplying the two polynomials they each represent.
Hint: You need to assume proper zero-padding to support the full-size convolution.
2
[Question 4] Laplacian Operator (20 marks)
The Laplace operator is a second-order differential operator in the “n”-dimensional Euclidean
space, defined as the divergence (∇) of the gradient (∇f). Thus if f is a twice-differentiable
real-valued function, then the Laplacian of f is defined by:
where the latter notations derive from formally writing:
Now, consider a 2D image I(x, y) and its Laplacian, given by ∆I = Ixx+Iyy. Here the second
partial derivatives are taken with respect to the directions of the variables x, y associated
with the image grid for convenience. Show that the Laplacian is in fact rotation invariant.
In other words, show that ∆I = Irr + Ir, where r and r
′ are any two orthogonal directions.
Hint: Start by using polar coordinates to describe a chosen location (x, y). Then use the
chain rule.
Part II: Implementation Tasks (60 marks)
[Question 5] Canny Edge Detector Robustness (10 marks)
Using the sample code provided in Tutorial 2, examine the sensitivity of the Canny edge
detector to Gaussian noise. To do so, take an image of your choice, and add i.i.d Gaussian
noise to each pixel. Analyze the performance of the edge detector as a function of noise variance. Include your observations and three sample outputs (corresponding to low, medium,
and high noise variances) in the report.
[Question 6] Edge Detection (50 marks)
In this question, the goal is to implement a rudimentary edge detection process that uses a
derivative of Gaussian, through a series of steps. For each step (excluding step 1) you are
supposed to test your implementation on the provided image, and also on one image of your
own choice. Include the results in your report.
Step I - Gaussian Blurring (10 marks): Implement a function that returns a 2D Gaussian matrix for input size and scale σ. Please note that you should not use any of the
existing libraries to create the filter, e.g. cv2.getGaussianKernel(). Moreover, visualize this
2D Gaussian matrix for two choices of σ with appropriate filter sizes. For the visualization,
3
you may consider a 2D image with a colormap, or a 3D graph. Make sure to include the
color bar or axis values.
Step II - Gradient Magnitude (10 marks): In the lectures, we discussed how partial
derivatives of an image are computed. We know that the edges in an image are from the
sudden changes of intensity and one way to capture that sudden change is to calculate the
gradient magnitude at each pixel. The edge strength or gradient magnitude is defined as:

where gx and gy are the gradients of image f(x, y) along x and y-axis direction respectively.
Using the Sobel operator, gx and gy can be computed as:
Implement a function that receives an image f(x, y) as input and returns its gradient g(x, y)
magnitude as output using the Sobel operator. You are supposed to implement the convolution required for this task from scratch, without using any existing libraries.
Step III - Threshold Algorithm (20 marks): After finding the image gradient, the
next step is to automatically find a threshold value so that edges can be determined. One
algorithm to automatically determine image-dependent threshold is as follows:
1. Let the initial threshold τ0 be equal to the average intensity of gradient image g(x, y),
as defined below:
where h and w are the height and width of the image under consideration.
2. Set iteration index i = 0, and categorize the pixels into two classes, where the lower
class consists of the pixels whose gradient magnitudes are less than τ0, and the upper
class contains the rest of the pixels.
3. Compute the average gradient magnitudes mL and mH of lower and upper classes,
respectively.
4. Set iteration i = i + 1 and update threshold value as:
τi =
mL + mH
2
5. Repeat steps 2 to 4 until |τi − τi−1| ≤ ϵ is satisfied, where ϵ → 0; take τi as final
threshold and denote it by τ .
4
Once the final threshold is obtained, each pixel of gradient image g(x, y) is compared
with τ . The pixels with a gradient higher than τ are considered as edge point and
is represented as white pixel; otherwise, it is designated as black. The edge-mapped
image E(x, y), thus obtained is:
E(x, y) = (
255, if g(x, y) ≥ τ
0, otherwise
Implement the aforementioned threshold algorithm. The input to this algorithm is the gradient image g(x, y) obtained from step II, and the output is a black and white edge-mapped
image E(x, y).
Step IV - Test (10 marks): Use the image provided along with this assignment, and also
one image of your choice to test all the previous steps (I to III) and to visualize your results
in the report. Convert the images to grayscale first. Please note that the input to each step
is the output of the previous step. In a brief paragraph, discuss how the algorithm works for
these two examples and highlight its strengths and/or its weaknesses.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:莆田純原鞋的3個常見進貨渠道-在哪買?多少錢STM潮鞋服終端供應(yīng)鏈
  • 下一篇:代寫IRP 1 Coursework 01編程、代做Python程序
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    老司机精品导航| 伊人久久一区| 亚洲午夜精品久久久久久app| 水蜜桃久久夜色精品一区的特点| 国产在线视频欧美一区| 蜜臀国产一区二区三区在线播放| 日产欧产美韩系列久久99| 日韩在线精品| 欧美午夜精彩| 国产精品一级在线观看| 深夜成人在线| 国产伊人精品| 亚洲综合图色| 国产精品第一国产精品| 日韩天天综合| 日韩精品一区二区三区中文字幕| 欧美男人天堂| 成人a'v在线播放| 精品久久亚洲| 日韩精品视频网| 日本一本不卡| 在线观看欧美理论a影院| 亚洲v天堂v手机在线| 蜜臀精品一区二区三区在线观看 | 成人噜噜噜噜| 日韩精品dvd| 亚洲精品中文字幕乱码| 日本一区二区三区播放| 日本中文字幕一区| 六月丁香综合| 99久久精品网站| 久久久久亚洲精品中文字幕| 欧美伊人影院| 亚洲精品福利电影| 精品1区2区3区4区| 加勒比色综合久久久久久久久| 中文字幕日韩一区二区不卡 | 亚洲欧美日本视频在线观看| 视频精品一区| 综合五月婷婷| 欧美一区国产在线| 黑人精品一区| 99在线观看免费视频精品观看| 欧美黑人巨大videos精品| 国产欧美日韩精品一区二区免费| 久久精品国产77777蜜臀| 99日韩精品| 国产一区视频在线观看免费| 果冻天美麻豆一区二区国产| 五月综合久久| 国产激情一区| 久久中文精品| 免费看男女www网站入口在线 | 99精品全国免费观看视频软件| 日韩有码一区| 亚洲青青久久| 在线观看一区视频| 日本成人在线电影网| 高清亚洲高清| 欧美丰满日韩| 色777狠狠狠综合伊人| 女生裸体视频一区二区三区| 国产一区观看| 久久国产亚洲精品| 麻豆视频久久| 日本免费精品| av日韩在线播放| 亚洲黄页网站| 亚洲最大在线| 少妇精品在线| 国产欧美日韩影院| 日韩激情网站| jizz性欧美23| 麻豆精品少妇| 久久人人99| 波多野结衣在线观看一区二区三区| 99re6这里只有精品| 99久久久久国产精品| 99精品视频精品精品视频 | 欧美激情精品| 国产一区二区三区日韩精品| 亚洲三级网址| 91麻豆精品国产综合久久久| 国产aa精品| 日韩成人dvd| 精品国产91| 久久中文字幕二区| 亚洲精品久久| 欧美专区在线| 国产盗摄——sm在线视频| 天堂中文av在线资源库| 99精品国自产在线| 国产精品s色| 久久精品系列| 欧美午夜网站| 日韩中文字幕| 成人久久一区| 日韩视频久久| 日韩综合网站| 国产成人精品一区二区三区在线 | 欧美激情另类| sm性调教片在线观看| 精品日本视频| 国产精品九九| 久久九九精品视频| 91精品亚洲| 欧美在线一级| 麻豆精品在线观看| 高清av一区二区三区| 日韩欧美午夜| 日本女人一区二区三区| 天海翼亚洲一区二区三区| 色婷婷久久久| 93在线视频精品免费观看| 日韩综合一区二区| 日韩视频1区| 亚洲欧洲日本mm| 亚洲aⅴ网站| 亚洲精品亚洲人成在线| 欧美手机在线| 日韩电影二区| 国产乱码精品一区二区三区亚洲人| 色播一区二区| 免费欧美在线视频| 久久资源综合| 国产韩国精品一区二区三区| 日韩视频在线观看| 精品国产一级| 麻豆精品网站| 日本在线不卡视频一二三区| 国产福利资源一区| 91一区在线| 日韩电影免费一区| 久久成人国产| 99re8精品视频在线观看| 天天插综合网| 美女视频网站久久| 91精品国产成人观看| 亚洲成人看片| 视频一区中文字幕精品| 免费不卡在线观看| 国产精品一区二区三区av麻 | 天堂√8在线中文| 婷婷五月色综合香五月| 久久亚洲风情| 国产精品一区二区av日韩在线| 99热这里只有成人精品国产| 亚洲三级免费| 亚洲欧洲一区二区天堂久久| 另类中文字幕网| 午夜国产欧美理论在线播放 | 国产乱码精品一区二区亚洲| 免播放器亚洲| 国产精品午夜一区二区三区| 久久亚洲图片| 亚洲欧美日本伦理| 老色鬼在线视频| 日韩欧美一级| 日韩综合久久| 97久久超碰| 91精品影视| 99久久www免费| 日韩国产在线观看一区| 一精品久久久| 国产精品欧美日韩一区| 日韩欧美国产精品综合嫩v| 国产精品久久久免费| 婷婷成人在线| 欧美日本一区| 久久午夜精品| 久久精品九色| av成人在线观看| 久久中文亚洲字幕| 国内精品久久久久久久97牛牛| 欧美一区二区三区高清视频| 欧美国产三级| 免费久久99精品国产| 天天综合网天天| 99久久激情| 国产精品一区二区精品| 国产在线精彩视频| 欧美91在线| 欧美精品大片| 国产欧美一区二区三区精品酒店| 国产精品jk白丝蜜臀av小说 | 亚洲成人不卡| 国产综合久久| 日韩不卡一区二区| 国产精品麻豆成人av电影艾秋| 好看的日韩av电影| 亚洲1区在线| 亚洲有吗中文字幕| 亚洲少妇视频| 9色国产精品| 欧美五码在线| 亚洲毛片免费看| 美女www一区二区| 亚洲精品88| 先锋影音久久久| 欧美色图在线播放|