加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CS 476/676 程序

時間:2024-02-14  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


Winter 2024 CS **6/676

Assignment 1

Due Feb-11, 11:59pm, via Crowdmark.

1. [8] Consider a **period binomial model with T = 1 and assume the risk free interest rate r = 0. That is, the stock (currently priced at S0 = 10) can got up to STu = uS0 with probability pu or down to STd = dS0 with probability 1−pu where pu ∈ (0,1). We know that d < 1 < u, but we do not know u or d. Suppose the following two options are traded in the market, both with maturity T = 1:

• European Put with strike K = 9 and current price P (1) = 1, 10

• European Put with strike K = 8 and P (2) = 1/3. 20

Assume the market is arbitrage free.

(a) [3] What is the fair value of a European call option with a strike price of K3 = 7?

(b) [2]Let δ0 be the number of stocks and η0 the number of bonds (noting B0 = BT = 1) you hold at t = 0. Find δ0 and η0 so that your strategy exactly replicates the payout of a short position in this call.

(c) [3] Using the actual probability pu, what is the expected option payoff for the European call in (a)? What is wrong with pricing this call option at this expected payoff value? If this European call option is priced at the expected payoff using p which is different from the fair value computed in (a), how can you construct an arbitrage?

2. [4] Consider the N-period binomial lattice. Denote by Snj for 0 ≤ n ≤ N and 0 ≤ j ≤ n be the price of the underlying at time tn and state j (i.e., j ups). A European Straddle Option has payoff at time T

max{K −SN,0}+max{SN −K,0}.

Denote by V (Snj , K, tn) be the fair value of the straddle option at time tn in state j. Use induction (over n)

to show that for any constant λ > 0,

V(λSnj,λK,tn)=λV(Snj,K,tn), n=0,1...,N,j=0,1,...,n.

3. [8] Consider the N-period binomial lattice where, at time t , the stock price Sj can go up to Sj+1 = uSj n n n+1n

with probability pu and sown to Sj n+1

interest rate and denote by

= dSj with probability 1 − pu. Denote by r > 0 the constant risk free n

qu = er∆t − d u−d

the risk neutral probability.

(a) [3] Provide an expression for all possible stock prices at T = ∆t · N .

(b) [2] If S0 is given, what is the risk neutral probability that, at time T, the stock price has experienced exactly k up moves?

(c) [3] Using risk neutral pricing, provide the expression, in terms of T, qu, K, r for the fair time t = 0 value of a European straddle expiry T and strike price K. Recall from Question 3 that such an option has payout max{K − SN , 0} + max{SN − K, 0}. Justify your answer.

4. [8] In this exercise, we consider the problem of pricing a Parisian Up-and-In Call. Let (St)t≥0 be a geometric Brownian Motion with drift r being equal to the risk-free interest rate and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). Let K > 0 be the strike price and L > 0 be a barrier. A Parisian Up-and-In Call (PUIC) option is activated if the stock price process (St)t∈[0,T] exceeds L consecutively for a period of time at least D > 0. Hence, the payout of a PUIC option at time T is max {0, (ST − K ) · A}, where

(1, if (St)t∈[0,T] had a consecutive excursion above L that lasted at least D, A=.

0, otherwise.

Today’s price is the discounted expected payoff; hence, we are estimating μ = E ?e−rT max {(ST − K) · A, 0}? .

For simplicity, we assume throughout the remainder of this question that 0 < D < T, K,L > S0. 1

 

(a) [4] Give an algorithm, in pseudo-code, that computes a Monte Carlo estimator for μ based on n simu- lations.

(b) [4] Implement your algorithm from a). Let N = 250, r = 0.05, σ = 0.25, D = 0.1, T = 1, S0 = 100 and i)K=110,L=120andii)K=120,L=110. Foreachofi)andii),reportaMCestimateforμalong with a 95% confidence interval based on n = 100, 000 independent simulations.

Note. In order to count how long the stock price was above L, use the following:

• IfStk ≥LandStk+1 ≥L,addtk+1−tk totheclock.

• If Stk < L and Stk+1 < L, there is no excursion.

• If Stk < L and Stk+1 ≥ L, an excursion started between tk and tk+1; add 0.5(tk+1 − tk) to the clock. • If Stk ≥ L and Stk+1 < L, an excursion ended between tk and tk+1; add 0.5(tk+1 − tk) to the clock.

5. [22] Consider the Black Scholes model, that is, let (St)t∈[0,T] be a geometric Brownian Motion with drift r and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). An Asian Option with maturity T and strike price K has

payout at time T given by max n0, 1 R T St dt − K o . Given time steps 0 ≤ t1 < · · · < tN = T for some N , we T0

consider the discretized Asian option with payout max n0, N1 PNj=1 Stj − Ko . Today’s price for this option

?−rT n 1PN o? is the discounted expected payoff. As such, we are estimating μ = E e max 0, N j=1 Stj − K

the remainder of this question, assume the time steps are given by tk = Nk T for k = 1,...,N. (a) [1] Explain why this option is a path dependent option.

. For

(b) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using (naive) Monte Carlo.

(c) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using antithetic variates.

(d) [2] There is no known analytical formula for μ. The reason is that the distribution of the sum of log-

normals is not known. However, if we replace the arithmetic average N1 PNj=1 Stj by the geometric

?−rT ? ?QN ?1/N ?? average, i.e., if we consider μg = E e max 0, j =1 S (tj ) − K

instead, the problem sim- plifies as the distribution of the product of log-normals is again log-normal. One can show (you don’t

need to) that μg = e−rT ?ea+b/2Φ(d1) − KΦ(d2)?, where a=log(S0)+(r−σ2/2)T(N+1)/(2N), b=σ2T(N+1)(2N+1),

√ √ 6N2 d1 =(−log(K)+a+b)/ b, d2 =d1 − b.

Explain why using the Asian Option with geometric averaging can be used as a control variable to price the Asian Option with arithmetic averaging.

(e) [3] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using the geometric Asian Option as a control variable. Estimate the internal β using a pilot run.

(f) [4] Implement your algorithms from b), c) and e) and call your functions with S0 = 100, K = 110, r = 0.01, σ = 0.1, T = 1, N = 260 and n = 105 and npil = 100. You should report 3 confidence intervals, one for each algorithm. Comment on your output.

Finally, suppose instead of the continuous time Black Scholes model, we assume an N-period binomial model √

with u = eσ

(g) [3] Write down an algorithm, in pseudo-code, to find the fair value V0 of an Asian Call Option.

T/N, d = 1/u and qu = 1/2 (and the same σ,r,S0,K,T as before).

(h) [3] Implement your algorithm and, for each N ∈ {5, 10, 20} report the output for S0 = 100, K = 110,

r=0.01,σ=0.1(justlikebefore),u=eσ T/N,d=1/u.

(i) [2] Discuss advantages and shortcomings of the MC method versus the approximation through the binomial model.

2

 

6. [5] Graduate Students Only. Consider the N-period binomial model, but assume that at each time n ≥ 1, the up factor un = un(ω1,...,ωn) and down factor dn = dn(ω1,...,ωn) and the risk free interest rate rn = rn(ω1,...,ωn) are allowed to depend on n and the first n outcomes ω1,...,ωn ∈ {up,down}. The initial values u0,d0,r0 at time 0 are given. The stock price at time 1 is

and, for n ≥ 1, the stock price at time n + 1 is (un(ω1,...,ωn)Sn(ω1,...,ωn),

(uS0, if ω1 = up, S1(ω1) = dS0, if ω2 = down.

if ωn+1 = up,

if ωn+1 = down. .

One dollar invested or borrowed from the bank account at time 0 grows to an investment or debt of er0∆t at time 1; for n ≥ 1, one dollar invested or borrowed at time n grows to an investment or debt of ern(ω1,...,ωn)∆t at time n + 1. We assume that the no-arbitrage condition

0 < dn(ω1,...,ωn) < exp{rn(ω1,...,ωn)∆t} < un(ω1,...,ωn)

for n ∈ N and ω1,...,ωn ∈ {up,down}. Similarly, assume that at time t = 0, 0 < d0 < er0∆t < u0.

Consider a derivative which, after N periods, pays off the random amount VN (ω1, . . . , ωN ).

(a) In the model just described, provide an algorithm for determining the price at time zero for the derivative.

(b) Construct a replicating portfolio in this general model. That is, provide a formulas for δn and ηn, n = 0, 1, . . . , so that if we hold δn stocks and ηn bonds, then this portfolio replicated the derivate payout VN at time N.

Sn+1(ω1,...,ωn,ωn+1) = dn(ω1,...,ωn)Sn(ω1,...,ωn),

如有需要,請加QQ:99515681 或WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫EMS5730、代做Python設(shè)計程序
  • 下一篇:代寫CS9053、代做Java語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    国产日韩欧美一区二区三区在线观看| 久久精品道一区二区三区| 亚洲精华液一区二区三区| 999久久久亚洲| 国产一区二区亚洲| 欧美a一级片| 国产精品久久久乱弄| 成人久久一区| 日韩成人一级| 影音先锋一区| 日韩久久视频| 老司机午夜精品视频| 欧美日韩在线播放视频| 日韩经典一区二区| 亚洲美女色禁图| 欧美三级精品| 91影院成人| 日韩网站在线| 激情综合自拍| 理论片一区二区在线| 日韩精品中文字幕吗一区二区| 麻豆成人综合网| 亚洲精品成a人ⅴ香蕉片| 日产精品一区二区| 亚洲在线视频| 黄色工厂这里只有精品| 欧美日韩中字| 国产精品久久久久久久| 欧美激情影院| 久久丁香四色| 日韩mv欧美mv国产网站| 久久香蕉网站| 麻豆91精品视频| 日韩成人精品一区二区三区| 国产精品久久久久久麻豆一区软件| 91国语精品自产拍| 久久婷婷av| 精品国产乱码| 国产香蕉精品| 欧美自拍一区| 国产精品对白| 人人狠狠综合久久亚洲婷婷 | 91嫩草精品| 麻豆视频久久| 嫩呦国产一区二区三区av | 一区二区毛片| 国产第一亚洲| 日本免费一区二区三区等视频| 亚洲优女在线| 亚洲风情在线资源| 美女网站视频一区| 国产精品蜜月aⅴ在线| 成人精品国产| 国产日韩亚洲欧美精品| 老鸭窝一区二区久久精品| 日本aⅴ亚洲精品中文乱码| 另类的小说在线视频另类成人小视频在线| 色999韩欧美国产综合俺来也| 精品69视频一区二区三区| 国产激情欧美| 欧美a一区二区| 久久男人av| 久久最新网址| 日本强好片久久久久久aaa| 精品国产三级| 神马香蕉久久| 国产综合网站| 乱人伦精品视频在线观看| 四虎成人av| 精品亚洲美女网站| 日本午夜一本久久久综合| 欧美精品18| 亚洲人亚洲人色久| 91综合久久爱com| 国产99精品一区| 水野朝阳av一区二区三区| 玖玖在线播放| 免费亚洲网站| 久久爱www成人| 国产精品中文字幕制服诱惑| 国模 一区 二区 三区| 亚洲一区不卡| 四虎成人精品永久免费av九九| 久久夜夜操妹子| 综合一区二区三区| 凹凸av导航大全精品| 免费久久99精品国产自在现线| 91精品国产一区二区在线观看| 亚洲香蕉视频| 91精品蜜臀一区二区三区在线| 一区二区视频欧美| 中文字幕人成乱码在线观看| 色综合视频一区二区三区44| 国产美女视频一区二区| 国偷自产av一区二区三区| 黄色亚洲大片免费在线观看| h片在线观看视频免费| 久久精品欧洲| 日韩视频1区| 午夜国产精品视频免费体验区| 亚洲伊人av| a一区二区三区亚洲| 精品99在线| 日韩主播视频在线| 国产精品亚洲欧美| 天堂99x99es久久精品免费| 99精品视频在线观看播放| 国产精品毛片一区二区在线看| 国产美女久久| 久久久久毛片免费观看| 中文日韩欧美| 国产日本精品| 国产精品久久久久av蜜臀| 巨乳诱惑日韩免费av| 欧美在线三区| 超碰精品在线观看| 免费看欧美女人艹b| 美女视频黄久久| 嗯用力啊快一点好舒服小柔久久| 性欧美精品高清| 国内一区二区三区| 精品嫩草影院| 日韩欧美看国产| 天海翼亚洲一区二区三区| 国产精品女主播一区二区三区| 亚洲国产99| 卡一精品卡二卡三网站乱码| 美国毛片一区二区三区| 欧美精品91| 亚洲精品1234| 久久精品国产精品亚洲精品| 精品视频免费| 日韩欧美精品| 精品日本12videosex| 午夜在线播放视频欧美| 欧美xxxx性| 日韩精品水蜜桃| 99蜜月精品久久91| 精品国产91| 一本大道色婷婷在线| 久久九九精品视频| 色乱码一区二区三区网站| 国产伦一区二区三区| 国产精品普通话对白| 中文无码久久精品| 亚洲少妇诱惑| 国产一区二区三区探花| 日韩在线a电影| 久久99国产成人小视频| 蜜臀va亚洲va欧美va天堂| 国产精品嫩草影院在线看| 亚洲男女自偷自拍| 亚洲+小说+欧美+激情+另类| 玖玖国产精品视频| 日韩不卡一二三区| 欧美亚洲日本精品| 国产日韩三级| 欧美日韩va| 欧美日韩四区| 伊人久久一区| 欧美freesextv| 亚洲日本va中文字幕| 国产成人精品一区二三区在线观看| 好吊妞视频这里有精品| 91tv亚洲精品香蕉国产一区| 久久婷婷麻豆| 日本不卡在线视频| 午夜在线一区二区| 精品视频91| 久久婷婷五月综合色丁香| 一区二区三区四区在线看 | 久久婷婷五月综合色丁香| 不卡在线一区二区| 麻豆精品蜜桃| 国内精品福利| 9999精品| 女海盗2成人h版中文字幕| 久久久精品五月天| 欧美欧美天天天天操| 男女男精品视频网| 欧美91在线| 成人乱码手机视频| 日韩伦理一区| 午夜视频一区| 精品成人18| 影音先锋久久久| av资源在线播放| 久久密一区二区三区| 国产一区二区三区视频在线| 亚洲v.com| 99精品福利视频| 亚洲一区二区三区四区电影| 免费一区视频| 亚洲人成午夜免电影费观看| 欧美综合久久| 亚洲免费一区三区| 欧美日韩一卡| 日本欧美一区| 日韩一区精品视频| 国产一区日韩欧美|