加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Spatial Networks for Locations

時間:2024-02-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Background
Spatial Networks for Locations
 Locations are connected via roads (we assume traders can travel in both
directions!)  These locations form a spatial network.  As traders used horses for travelling, they couldn’t travel too far!
Pottery Trade
Pottery trade was very active at that times. Each location had its own supply and demandfor pottery. The supply and demand were communicated by traders who also formed their
own networks. They also potentially communicated the prices, but in these project wewill
disregard this information.
Social Networks for Traders
Traders living in some locations know each other and exchange information about supplyand demand via postal services. These traders for a social network.
How to Represent Networks
Each network can be presented as a graph. In this project, we will focus on undirectedgraphs: both social and spatial networks can be represented as graphs:
1. Spatial networks: nodes correspond to locations, and edges —to roads betweenthem (both directions)
2. Social networks: nodes correspond to traders, and edges connect those who
know each other (communicate)
Networks/graphs can be very different!
Project Questions
1. Represent road maps and trader networks as graphs
2. Find the shortest path between any two locations (return the shortest path andthedistance)
3. (Static traders) Find the best trading options for a particular trader residing in aparticular location. Core concepts: Itineraries
Itineraries provide the basis for our spatial network. They are provided as a list of (L1,L2, distance) tuples; listed in any order. L1 and L2 are provided as strings, distance is an integer number (miles).
In the example:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
Supply and Demand of Goods (Pottery)
Each location has its own supply and demand in pottery: supply is provided as a positivenumber, demand — as a negative. Locations with the highest demand should be servedfirst. Assume both numbers are integers. This is provided as a dictionary (in no particular order)
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}Trader Locations
Traders reside in some but not all locations. Only locations where traders are present cantrade. Each location can have maximum a single trader. Traders are provided as strings.
Trader locations are provided as a dictionary (in no particular order). In the example:
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
Social network of Traders
Traders also form a social network. A trader only trades within their own network
(considers friends only). Traders also have access to supplies and demands in the
corresponding locations. Trader friendships are provided as a list of tuples (in no particular order):
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]Q1
Write a function create_spatial_network(itineraries) that takes itineraries (a list of
tuples) and returns for each location its neighbors and distances to them. A location is
considered to be a neighbour of another location if it can be reached by a single road (oneedge).
Input:
**3; itineraries: a list of tuples, where each tuple is of the
form (location1, location2, distance). location1 and location2 are the stringlabels for these locations and distance is an integer. Your function should return a list of tuples, where each tuple is of the
form (location, neighbours). neighbours should be of the
form [(neighbour1, distance1), (neighbour2, distance2), ...] and be sorted by their
distances (in the increasing order). If two or more neighbors have the same distance tothe location, tie-break by alphanumeric order on their labels. Note that in addition to the neighbors, the overall list has to be sorted. You may assume: **3; Distances are non-negative integer values
**3; Inputs are correctly formatted data structures and types
**3; There are no duplicate entries itineraries, and in each neighbor pair only appear
once (i.e. no [('L1', 'L2', 20), ('L2', 'L1', 20)])
Here is a diagram of an example network:
For the network above, this would be a possible itineraries and the function should
return the following:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
>>> create_spatial_network(itineraries)
[('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1', 20)]), ('L3', [('L2',10)]),('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4', 5), ('L6', 6), ('L8', 22)]),('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8', [('L4', 20), ('L5', 22)])]A different example (not pictured):
>>> itineraries = [('L4', 'L1', 2), ('L3', 'L1', 5), ('L1', 'L5', 5), ('L2', 'L5',1)]>>> create_spatial_network(itineraries)
[('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5', 1)]), ('L3', [('L1',5)]),('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
Q2
Write a function sort_demand_supply(status) that takes a dictionary of demands andsupplies and returns the information as a list of tuples sorted by the value so that locationswith greatest demands (the most negative number) are provided first.
Input: **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. Your function should return a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their labels. You may assume: **3; Inputs are correctly formatted data structures and types
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}>>> sort_demand_supply(status)
[('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6', 10), ('L8',10),('L1', 50)]
Another example:
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> sort_demand_supply(status)
[('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4', 100)]
Q3
Write a function create_social_network(traders) that takes traders, a list of tuples
specifing trader connections (edges in the trader social network) and returns a list
containing (trader, direct_connections) for each trader in traders.
Input: **3; traders: a list of tuples specifing trader connections (edges in the trader social
network). Each tuple is of the
form (trader1, trader2) where trader1 and trader2 are string names of
each trader.
Your function should return list of tuples in alphanumeric order of trader name, where
each tuple is of the form (trader, direct_connections), and direct_connections is analphanumerically sorted list of that trader's direct connections (i.e. there exists an edgebetween them in the trader social network). You may assume: **3; Inputs are correctly formatted data structures and types. Just like Q1a, you don't
need to guard against something like [('T1', 'T2'), ('T2', 'T1')] or duplicate
entries.
The pictured example:
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]>>> create_social_network(traders)
[('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1', 'T5', 'T6']), ('T5', ['T2','T3']),('T6', ['T3'])]
Another example (not pictured):
>>> traders = [('T1', 'T5'), ('T2', 'T6'), ('T3', 'T7'), ('T4', 'T8'), ('T1', 'T6'),('T2', 'T7'), ('T3', 'T8'), ('T4', 'T5'), ('T1', 'T7'), ('T2', 'T8'), ('T3', 'T5'),('T4','T6')]
>>> create_social_network(traders)
[('T1', ['T5', 'T6', 'T7']), ('T2', ['T6', 'T7', 'T8']), ('T3', ['T5', 'T7', 'T8']),('T4', ['T5', 'T6', 'T8']), ('T5', ['T1', 'T3', 'T4']), ('T6', ['T1', 'T2', 'T4']),('T7',['T1', 'T2', 'T3']), ('T8', ['T2', 'T3', 'T4'])]
Q4
Write a function shortest_path(spatial_network, source, target, max_bound) that
takes a spatial network, initial (source) location, target location and the maximumdistance(that a trader located in the initial location can travel) as its input and returns a tuple withashortest path and its total distance.
Input:  spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a.  source: the location label (string) of the initial location. **3; target: the location label (string) of the target location. **3; max_bound: an integer (or None) that specifies the maximum total distance that
your trader can travel. If max_bound is None then always return the path withminimum distance. Your function should return a tuple (path, total_distance), where path is a string of
each location label in the path separated by a - hyphen character, and total_distanceisthe total of the distances along the path.
If there's two paths with the same minimum total distance, choose the path with morelocations on it. If there's two paths with the same minimum total distance and they havethe same number of locations on the path then choose alphanumerically smaller pathstring.
If there is no path with a total distance within the max_bound then your function shouldreturn (None, None). You may assume:
 Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; The network is connected, so a path always exists, although it may not have atotal distance within the maximum bound.
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> shortest_path(spatial_network, 'L1', 'L3', 50)
('L**L2-L3', 30)
>>> shortest_path(spatial_network, 'L1', 'L3', 0)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', 10)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', None)
('L**L2-L3', 30)
Q5
In this question you will be writing a
function trade(spatial_network, status_sorted, trader_locations, trader_network, max_dist_per_unit=3) that makes a single trade.
Input:
**3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status_sorted: a list of tuples, where each tuple is of the
form (location, demand_supply), and the list is sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply) with ties brokenalphanumerically on location label. This corresponds with the output of the
function you wrote for Q1b. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c. **3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. Your function should return a single trade as a
tuple (supplier_location, consumer_location, amount) where supplier_locationand consumer_location are location labels (strings) and amount is a positive integer. If notrade is possible return (None, None, None).
Traders from the locations with highest demand contact their social network asking for
help. Then they choose the contacts worth travelling to, based on distance and the
amount of supply there. The trade shoud be determined as follows:
1. Find the location with the highest demand, this will be the consumer location. 2. Find the trader at the consumer location (skip this location and go back to step1if
there are no traders at this location) and consider the trader's connections. 3. A supplier location can only supply to the consumer location if their status is
positive (i.e. they have items to supply) and can supply an amount up to this value(i.e. they can't supply so much that they result in having a demand for the itemthey are supplying). 4. If a supplier location is directly neighbouring by a single road (adjacent) to theconsumer location then the distance used is the direct distance between the twolocations, even if there exists a shorter route via other locations. If the supplier andconsumer are not adjacent then the shortest_path function should be used todetermine the distance. 5. The trader will trade with the connection that has the highest amount of units tosupply, subject to meeting the max_dist_per_unit of the distance/units ratio. 6. Then if no trade is possible in this location, consider the next location. Return (None, None, None) if all locations have been considered. You may assume: **3; Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; There will be at most one trader at any particular location.
Consider the spatial and trader network in the image above. With a
default max_dist_per_unit of 3, the trader will only consider travelling maximum3 milesfor each unit (one direction), i.e. they will agree to travel 6 miles for get 2 pottery units but
not a single one.
In the example, we have 'L4' as the location with the highest demand of 40 units
(demand_supply=-40) and the trader 'T3' who resides there. 'T3''s direct connectionsare ['T1', 'T5', 'T6']. We can't trade with 'T5' because at their location ('L7') there is
also demand for the items. We compare the units able to be supplied and the distance-units ratio for each potential
supplier: **3; T1:
o location: L1
o supply max: 50
o distance: 15
o so they could supply all 40 units that are demanded at L4
o distance/units = 15/40 = 0.375
**3; T6:
o location: L5
o supply max: 5
o distance: 5
o so they could supply 5 of the units that are demanded at L4
o distance/units = 5/5 = 1.0
Since T1 has the largest amount of units able to be supplied, and the distance/units ratiois below the maximum (3), this trade goes ahead and the function would
return ('L1', 'L4', 40). >>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status_sorted = [('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6',10), ('L8', 10), ('L1', 50)]
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L4', 40)
More examples:
>>> spatial_network = [('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5',1)]),('L3', [('L1', 5)]), ('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> status_sorted = [('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4',100)]>>> trader_locations = {'T1': 'L1', 'T2': 'L2'}
>>> trader_network = [('T1', ['T2']), ('T2', ['T1'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L2', 20)
>>> trade(spatial_network, status_sorted, trader_locations, trader_network,
max_dist_per_unit=0.001)
(None, None, None)
Q6
In this part you'll be using the trade() function from part 3a iteratively to determine thestatus after several trades. Write a
function trade_iteratively(num_iter, spatial_network, status, trader_locations, trader_network, max_dist_per_unit=3) that takes the number of iterations to perform,
the spatial network, status dictionary, trader locations dictionary, trader network, and
maximum distance per unit and returns a tuple containing the sorted status list
after num_iter trades along with a list of trades performed.
Input: **3; num_iter: the number of iterations to perform as an integer or None if the
iteration should continue until no further trades can be made. **3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c.
**3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. At each iteration, the next trade to be performed is determined by the process in part 3a. We strongly suggest using the provided trade() function to find this trade. Your functionshould update the status dictionary at each iteration. Your function should return a tuple (final_supply_sorted, trades) containing the sorteddemand-supply status after num_iter trades along with a list of trades performed. The final_supply_sorted should be a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their
labels. trades should be a list of each trade performed, where a trade is of the
form (supplier_location, consumer_location, amount) where supplier_locationandconsumer_location are location labels (strings) and amount is a positive integer. You may assume: Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values.  There will be at most one trader at any particular location.
In the example pictured, only one trade can occur:
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status = {'L1': 50, 'L2': -5, 'L4': -40, 'L3': 5, 'L5': 5, 'L8': 10, 'L6': 10,'L7':-30}
>>> trader_locations = {'T1': 'L1', 'T2': 'L3', 'T3': 'L4', 'T4': 'L8', 'T5': 'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade_iteratively(1, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])
>>> trade_iteratively(None, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])

請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE438、代做C/C++編程語言
  • 下一篇: cs400編程代寫、A03.FirstGit程序語言代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲天堂黄色| 亚洲最新色图| 亚洲一区自拍| 精品国产精品国产偷麻豆| 国产日韩欧美一区| 成人在线国产| 牲欧美videos精品| 国产亚洲欧美日韩在线观看一区二区 | 一呦二呦三呦国产精品| 国产精品午夜一区二区三区| 成人亚洲网站| 麻豆蜜桃在线观看| 午夜久久一区| 99精品网站| 激情综合五月| 成人噜噜噜噜| 男女啪啪999亚洲精品| 欧美aaaa视频| 一本色道久久综合亚洲精品高清| 国产精品色在线网站| 国产成人手机高清在线观看网站| 国产成人免费精品| 欧美日韩国产观看视频| 亚洲一区成人| 国产韩国精品一区二区三区| 一区二区三区在线免费看| 一区二区免费不卡在线| 国产人成精品一区二区三| 日韩免费视频| 色喇叭免费久久综合| 午夜日韩激情| 99久久www免费| 玖玖玖免费嫩草在线影院一区| 亚洲三级精品| 韩国一区二区三区视频| 欧美一级一区| 成人国产精品入口免费视频| 欧美裸体视频| а√天堂中文资源在线bt| 丝袜美腿一区二区三区| 亚洲深夜激情| 99re国产精品| 国产亚洲欧洲| 美女日韩在线中文字幕| 亚洲一区网站| 亚洲欧美日韩专区| 99人久久精品视频最新地址| 免费视频亚洲| 欧美不卡在线| 久草在线成人| 欧美精品黄色| 中文一区在线| 三级在线观看一区二区| 模特精品在线| 水蜜桃久久夜色精品一区| 色综合狠狠操| 神马午夜在线视频| 蜜桃视频在线网站| 亚洲深夜视频| 成人免费网站www网站高清| 午夜欧美激情| 欧美性www| 国产毛片精品久久| 久久91视频| 麻豆精品蜜桃视频网站| 欧美激情四色| 天堂99x99es久久精品免费| 麻豆国产一区| 99精品小视频| 在线亚洲成人| 97人人精品| 成人日韩av| 亚洲毛片视频| 少妇一区二区视频| 在线一区二区三区视频| 加勒比色综合久久久久久久久| 久久国产主播| 日韩视频免费| 亚洲欧美小说色综合小说一区| 欧美性aaa| 伊人久久精品| 911精品国产| 国产一在线精品一区在线观看| 狠狠入ady亚洲精品| 久久国产66| 日韩经典一区| 91成人app| 福利片在线一区二区| 艳女tv在线观看国产一区| 美国三级日本三级久久99| 欧美精品高清| 久久悠悠精品综合网| 久久中文字幕一区二区| 蜜臀av一区| 免费久久精品视频| 久久国产欧美日韩精品| 国产欧美日韩免费观看| 美女午夜精品| 老司机久久99久久精品播放免费| 69堂免费精品视频在线播放| 一区二区三区在线| 欧美激情15p| 蜜桃传媒麻豆第一区在线观看| 国产精品美女午夜爽爽| 亚洲成人一品| 国产一区久久| 日韩精品二区| 国产精品一区高清| 国产99久久久国产精品成人免费| 日产精品一区二区| 亚久久调教视频| 亚洲午夜免费| 丝袜国产日韩另类美女| 国产日韩欧美三级| 成人精品毛片| 欧美3p在线观看| 亚洲字幕久久| 亚洲福利专区| 最新日韩一区| 亚洲不卡在线| 免费在线欧美视频| 久久悠悠精品综合网| 久久蜜桃av| 成人国产一区二区三区精品麻豆| 日韩电影在线免费观看| 亚洲欧美卡通另类91av| 日本视频中文字幕一区二区三区| 亚洲成人黄色| a在线视频v视频| 久久综合影院| 亚洲在线成人| 欧美三级不卡| 香蕉国产精品| 亚欧成人精品| 一本久久青青| 国产成人a视频高清在线观看| 18国产精品| 日韩av免费大片| 国产va免费精品观看精品视频| 亚洲成人一区| 欧美日韩亚洲三区| 欧美日韩激情| 久久在线精品| 香蕉人人精品| 美女在线视频一区| 美女午夜精品| 国产69精品久久| 亚洲啊v在线观看| 欧美在线看片| 欧美日韩性在线观看| 久久中文在线| 亚洲第一偷拍| 中文字幕日韩欧美精品高清在线| 午夜电影亚洲| 亚洲人成网站在线在线观看| 亚洲在线日韩| 亚洲精品一级二级三级| 国产欧洲在线| 99ri日韩精品视频| 免费污视频在线一区| 欧美人体视频| 青青青爽久久午夜综合久久午夜| 波多野结衣在线观看一区二区| 在线观看一区| 国产精品美女久久久浪潮软件| 国产免费av一区二区三区| 欧美高清视频在线观看mv| 伊人久久大香线蕉av超碰| 男女羞羞在线观看| 久久久国产亚洲精品| 麻豆免费看一区二区三区| 制服诱惑一区二区| 亚洲aaa级| 小黄鸭精品aⅴ导航网站入口| 人人香蕉久久| 亚洲人metart人体| 91亚洲一区| 牲欧美videos精品| 一区二区三区四区日韩| 国产精品yjizz视频网| 国产一级成人av| 青青草伊人久久| 日本一二区不卡| 91精品蜜臀一区二区三区在线| 国产精品久久久免费| 久久动漫亚洲| 欧美色图婷婷| 精品一区二区三区中文字幕| 伊人久久综合一区二区| 欧美.www| 日韩二区三区四区| 精品久久99| 色综合色综合| 蜜桃视频欧美| 欧美激情在线精品一区二区三区| 素人一区二区三区| 香蕉久久国产| 国产91一区| 日韩精品一区二区三区中文在线| 一本综合精品|