加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MLDS 421: Data Mining

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产一区二区三区视频在线| 98精品视频| 久久综合亚洲| 日韩视频网站在线观看| 欧美福利在线| 亚洲区小说区图片区qvod按摩| 九色porny丨国产首页在线| 成人vr资源| 亚洲精品在线a| 麻豆精品在线视频| 亚洲伊人av| 男人的天堂成人在线| 色天天色综合| av日韩在线播放| 综合久久一区| 日韩成人免费av| 黄色在线观看www| 日韩亚洲国产精品| 六月丁香久久丫| 日韩视频在线直播| 在线观看欧美| 美女视频黄免费的久久| segui88久久综合9999| 亚洲激情欧美| 欧洲激情综合| 久久影视一区| 亚洲伊人影院| 亚洲精品国产setv| 综合激情网站| 国内精品久久久久久久影视麻豆| 神马久久资源| 老色鬼在线视频| 日韩av在线播放网址| 亚洲一区欧美二区| 尤物网精品视频| 黄色另类av| 狠狠综合久久av一区二区老牛| 亚洲天堂偷拍| 亚洲图片在线| 先锋资源久久| 婷婷亚洲五月色综合| 国产精品99久久| 国产精品91一区二区三区| 亚洲韩日在线| 欧美成人高清| 很黄很黄激情成人| 婷婷丁香综合| 亚洲经典在线| 国产精品毛片一区二区三区| 欧美日韩国内| 9久re热视频在线精品| 黄色亚洲在线| 老色鬼久久亚洲一区二区| 亚洲免费影视| 蜜桃av噜噜一区二区三区小说| 日韩中文欧美在线| 蜜桃精品在线观看| av高清不卡| 青娱乐极品盛宴一区二区| 成人在线黄色| 欧美一级视频| 国产精品2区| 久久爱www.| 成人久久综合| 狠狠入ady亚洲精品经典电影| 中文亚洲字幕| 蜜乳av一区二区| 国色天香一区二区| 日韩国产精品大片| 日本不卡视频在线| 亚洲一区二区三区久久久| 国产一区二区在线观| 亚洲另类春色校园小说| 亚洲啊v在线免费视频| 99久久婷婷国产综合精品电影√| 国产综合网站| 国产精品伦理久久久久久| 日本免费一区二区六区| 国产精品黄色片| 一区二区三区午夜探花| 一区二区三区视频播放| 欧美 日韩 国产 一区| 免费视频最近日韩| 亚洲精品aa| 亚洲综合色站| 丁香婷婷成人| 在线精品视频在线观看高清| 久久久久免费| 欧美在线日韩| 日韩动漫一区| 久久精品观看| 日韩在线播放一区二区| 亚洲成人va| 91成人短视频在线观看| 国产精品极品| 午夜在线观看免费一区| 全球中文成人在线| 国产一区二区三区精品在线观看| 99精品中文字幕在线不卡| 狠狠入ady亚洲精品| 免费在线小视频| 欧美激情视频一区二区三区在线播放 | 荡女精品导航| 亚洲激情中文| 日韩精品不卡一区二区| 影音先锋日韩资源| 97色成人综合网站| 亚洲在线成人| 久久国产免费看| 精品999日本久久久影院| 亚洲激情中文| 久久高清免费| 777午夜精品电影免费看| 久久国内精品视频| 日韩精品久久久久久久电影99爱| 久久精品国产亚洲blacked| 久久久久久免费视频| 日韩精品一二三四| 欧美xxxx性| 日本在线成人| 影音国产精品| 天堂久久一区| 日日夜夜精品视频| 在线一区欧美| 久久精品国产网站| 7m精品国产导航在线| 999亚洲国产精| 欧美极品在线| 国产伦理久久久久久妇女| 黄色亚洲在线| 三级成人在线视频| 国产成人在线中文字幕| 久久久久久色| 粉嫩av国产一区二区三区| 久久精品123| 亚洲一级少妇| 日韩av不卡在线观看| 一本色道88久久加勒比精品| 欧美一区二区| 美女主播精品视频一二三四| 波多野结衣久久精品| 久久不卡国产精品一区二区 | 日韩精品午夜视频| 视频亚洲一区二区| 久久久久久久尹人综合网亚洲| 永久亚洲成a人片777777| 国产一区观看| 一区二区三区成人精品| 久久狠狠久久| 影音成人av| 日韩视频在线直播| 在线观看涩涩| 国语一区二区三区| 日本综合久久| 欧美在线导航| 欧美亚洲一区二区三区| 欧美综合久久| 日本不卡免费在线视频| 在线观看免费一区二区| 欧美激情综合色综合啪啪| 夜夜精品视频| 日日狠狠久久偷偷综合色| 日韩aaaa| 精品国产乱码久久久| 欧美精选视频一区二区| 欧美调教在线| 99精品视频免费观看| 欧美99久久| aa亚洲一区一区三区| 丝袜诱惑制服诱惑色一区在线观看| 少妇精品久久久| 吉吉日韩欧美| 91精品国产乱码久久久久久久 | 欧美aaaaa成人免费观看视频| 午夜视频精品| 日韩电影在线观看电影| 91看片一区| jlzzjlzz亚洲女人| 国产一区二区在线| 伊人成综合网站| 久久国产电影| 宅男噜噜噜66国产精品免费| 国产调教在线| 久久久久国产精品一区二区| 久久精品国产77777蜜臀| 在线亚洲成人| caoporn成人免费视频在线| 日本精品在线一区| 欧美日韩hd| 日本精品在线播放 | 亚州av乱码久久精品蜜桃| 在线欧美激情| 国产综合色区在线观看| 欧美伦理在线视频| 偷拍亚洲色图| 国产成人福利夜色影视| 亚洲欧美久久久| 精品三级av在线导航| 亚洲欧美久久精品| 欧美一级做一级爱a做片性|