加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美精品一二| 亚洲精选国产| 在线日韩电影| 国产一区毛片| 色综合.com| 免费日韩av片| 久久中文字幕av| 日韩极品在线| 日韩高清电影一区| 麻豆网站免费在线观看| 亚洲精品一区二区妖精| 日韩欧美一级| 中文字幕人成人乱码| 五月激情久久| 蜜臀久久99精品久久久画质超高清| 成人毛片在线| 91成人午夜| 国产探花在线精品| 麻豆一区二区三| 中文字幕日本一区二区| 日韩av专区| 宅男噜噜噜66一区二区| 久久九九免费| 极品尤物一区| 视频二区欧美| 久久av综合| 亚洲综合小说| 日本va欧美va精品发布| 日韩另类视频| segui88久久综合9999| 欧美一级专区| 国产视频一区三区| 91久久国产| 激情婷婷综合| 伊人久久综合影院| 欧美一区二区三区久久| 成人在线视频你懂的| 日韩经典中文字幕一区| 国产日韩欧美一区二区三区| 亚洲精品日韩久久| 久久精品天堂| 麻豆视频一区二区| 日日噜噜夜夜狠狠视频欧美人 | 亚洲激情不卡| 激情综合在线| 欧洲福利电影| 午夜日韩视频| 亚洲自啪免费| 日本欧洲一区二区| 蜜臀av在线播放一区二区三区| 午夜亚洲激情| 日韩88av| 色偷偷色偷偷色偷偷在线视频| 欧美3p在线观看| 美国毛片一区二区三区| 在线天堂资源www在线污| bbw在线视频| 成人va天堂| 日韩一区二区三免费高清在线观看| 欧美天堂在线| 国产精品久久久久久模特| 日韩精品福利网| 国内揄拍国内精品久久| 99精品国产九九国产精品| 国产欧美亚洲精品a| 亚洲视频分类| 国产香蕉精品| 婷婷综合网站| 久久xxxx| 中文字幕人成乱码在线观看| 欧美色网一区| 久久精品国产成人一区二区三区| 麻豆高清免费国产一区| 99亚洲男女激情在线观看| 日韩av资源网| 美女视频亚洲色图| 天天天综合网| 久久久久久网| 亚州精品国产| 亚洲日本中文| 亚洲国产中文在线| 一区二区美女| 免费xxxx性欧美18vr| 欧美天堂视频| 麻豆国产一区二区| 日韩成人精品在线| 久久精品影视| 日韩中文字幕麻豆| 97人人做人人爽香蕉精品| 91成人精品观看| 成人h动漫免费观看网站| 午夜片欧美伦| 久久青青视频| 日日夜夜免费精品视频| 日韩精选在线| 欧美99久久| 日韩欧美高清| 国产不卡精品| 神马日本精品| 蜜臀av性久久久久蜜臀aⅴ流畅| 亚洲ww精品| 精品国产一级| 一级毛片免费高清中文字幕久久网| 免费欧美在线视频| 日韩综合在线视频| av一级亚洲| 夜夜精品视频| 丁香婷婷久久| 51vv免费精品视频一区二区| 91超碰国产精品| 精精国产xxx在线视频app| 亚洲精品一区二区在线播放∴| 久久国产主播| 四虎国产精品免费观看| 欧美日韩99| 亚洲天堂成人| 日本不卡免费高清视频在线| 91精品一久久香蕉国产线看观看| 精品一区二区三区的国产在线观看 | 欧洲一区在线| 五月天久久久| 久久精品国产精品亚洲综合| 伊人久久亚洲| 色综合久久一区二区三区| 日韩国产欧美三级| 精品产国自在拍| 吉吉日韩欧美| 精品国产亚洲一区二区三区| 蜜桃视频一区| 欧美激情性爽国产精品17p| 欧美一站二站| 香蕉成人在线| 精品国内自产拍在线观看视频| 久久久久久色| 亚洲裸色大胆大尺寸艺术写真| 欧美日韩hd| 亚洲精品美女| 波多野结衣一区| 日一区二区三区| 激情久久五月| 日韩精品乱码av一区二区| 久久精品91| 国产日韩欧美一区二区三区在线观看 | 91视频久久| 日韩va亚洲va欧美va久久| 欧美jizz| 日韩免费精品| 免费高潮视频95在线观看网站| 精品国产18久久久久久二百| yellow在线观看网址| 日韩视频1区| 日韩伦理视频| 玖玖玖免费嫩草在线影院一区| 日本国产一区| 国产99久久精品一区二区300| 久久精品免费看| 国产综合网站| 国产精品啊啊啊| 午夜综合激情| 精品视频在线播放一区二区三区| 91青青国产在线观看精品| 中文字幕一区二区三区四区久久| 波多视频一区| 久久久久国产| 亚洲精品综合| 日韩精品一二三| 激情小说亚洲色图| 一区二区日韩免费看| 欧美日韩国产色综合一二三四| 你懂的视频一区二区| 成人激情视频| 亚洲精品在线a| 久久精品国产亚洲高清剧情介绍 | 亚洲综合日韩| 1204国产成人精品视频| 四虎精品永久免费| 亚洲欧洲日本一区二区三区| 国产成人精品一区二区免费看京| 在线天堂资源www在线污| 色老板在线视频一区二区| 久久午夜影院| 亚洲免费福利| 亚洲黑丝一区二区| 国产欧美日韩精品一区二区免费 | 精品嫩草影院| 成人va天堂| 黄色亚洲在线| 日韩高清影视在线观看| 成人精品国产亚洲| 亚洲综合欧美| 国产在线播放精品| 91成人app| 日韩一区二区三区免费播放| 婷婷综合视频| 99久热这里只有精品视频免费观看| 欧美亚洲免费| 日韩电影二区| 欧美日韩国产亚洲一区| 亚洲五码在线| 国产精品日韩精品在线播放|