加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做COMP9020 程序 Assignment 1

時間:2024-02-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


COMP**20 Assignment 1 2024 Term 1

  Due: Thursday, 29th February, 18:00 (AEDT)

Submission is through inspera. Your assignment will be automatically submitted at the above due date. If you manually submit before this time, you can reopen your submission and con- tinue until the deadline.

If you need to make a submission after the deadline, please use this link to request an extension: https://www.cse.unsw.edu.au/ cs**20/extension_request.html. Unless you are granted Special Consideration, a lateness penalty of 5% of raw mark per 24 hours or part thereof for a maximum of 5 days will apply. You can request an extension up to 5 days after the deadline.

Answers are expected to be provided either:

• In the text box provided using plain text, including unicode characters and/or the built-in formula editor (diagrams can be drawn using the built-in drawing tool); or

• as a pdf (e.g. using LATEX) – each question should be submitted on its own pdf, with at most one pdf per question.

Handwritten solutions will be accepted if unavoidable, but that we don’t recommend this ap- proach as the assessments are designed to familiarise students with typesetting mathematics in preparation for the final exam and for future courses.

Discussion of assignment material with others is permitted, but the work submitted must be your own in line with the University’s plagiarism policy.

  Problem 1

For x,y ∈ Z, we define the set

Sx,y ={mx+ny:m,n∈Z}

a) Provethatforallm,n,x,y,z∈Z,ifz|xandz|ythenz|(mx+ny).

(33 marks)

 b) Prove that 2 is the smallest positive element of S4,6.

Hint: To show that the element is the smallest, you will need to show that some values cannot be obtained.

Use the fact proven in part (a)

c) Find the smallest positive element of S−6,15.

For the following questions let d = gcd(x, y) and z be the smallest positive number in Sx,y, or 0 if there are no positive numbers in Sx,y.

d) ProvethatSx,y ⊆{n∈Z:d|n}.

e) Prove that d ≤ z.

f) Prove that z|x and z|y.

Hint: consider (x%z) and (y%z)

g) Prove that z ≤ d.

h) Using the answers from (e) and (g), explain why Sx,y ⊇ {n ∈ Z : d|n}

4 marks

4 marks

4 marks

3 marks

8 marks

2 marks

4 marks

1

4 marks

 

 Remark

The result that there exists m, n ∈ Z such that mx + ny = gcd(x, y) is known as Bézout’s identity. Two useful consequences of Bézout’s identity are:

• If c|x and c|y then c| gcd x, y (i.e. gcd(x, y) is a multiple of all common factors of x and y) • If gcd(x, y) = 1, then there is a unique w ∈ [0, y) such that xw =(y) 1 (i.e. multiplicative

inverses exist in modulo y, if x is coprime with y)

Problem 2 (16 marks) Proof Assistant: https://cgi.cse.unsw.edu.au/∼cs**20/cgi-bin/proof_assistant?A1

Prove, using the laws of set operations (and any results proven in lectures), the following identities hold for all sets A, B, C.

   a) (Annihilation) A ∩ ∅ = ∅

b) (A\C)∪(B\C) = (A∪B)\C

c) A ⊕ U = Ac

d) (DeMorgan’slaw)(A∩B)c =Ac∪Bc

4 marks

4 marks

4 marks

4 marks

4 marks

4 marks

8 marks

6 marks

 Problem 3

Let Σ = {a, b}, and let

(26 marks)

d) Prove that:

L2 ∩ L3 = (Σ=6)∗

negative even number, prove that:

L2L3 =Σ∗\{a,b}

L2 = (Σ=2)∗

and L3 = (Σ=3)∗.

a) Give a complete description of Σ=2 and Σ=3; and an informal description of L2 and L3.

b) Prove that for all w ∈ L1, length(w) =(2) 0.

c) Show that Σ2 and Σ3 give a counter-example to the proposition that for all sets X,Y ⊆ Σ∗, (X ∩ Y)∗ = X∗ ∩ Y∗.

e) Using the observation that every natural number n ≥ 2 is either even or 3 more than a non-

2

4 marks

 

Advice on how to do the assignment

Collaboration is encouraged, but all submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

• Assignments are to be submitted in inspera.

• When giving answers to questions, we always would like you to prove/explain/motivate your answers. You are being assessed on your understanding and ability.

• Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for your worst answer, as this indicates how well you understood the question.

• Some of the questions are very easy (with the help of external resources). You may make use of external material provided it is properly referenced1 – however, answers that depend too heavily on external resources may not receive full marks if you have not adequately demonstrated ability/understanding.

• Questions have been given an indicative difficulty level:

Credit Distinction High distinction

This should be taken as a guide only. Partial marks are available in all questions, and achievable

by students of all abilities.

    Pass

 1Proper referencing means sufficient information for a marker to access the material. Results from the lectures or textbook can be used without proof, but should still be referenced.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:CSC173代做、Java編程設計代寫
  • 下一篇:莆田鞋正確拿貨方式:盤點十個莆田鞋拿貨渠道
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久91超碰青草在哪里看| 欧美ab在线视频| 香蕉成人在线| 99国产精品私拍| 午夜日韩影院| 国内精品久久久久久久97牛牛| 免费精品视频| 亚洲v在线看| 日本一不卡视频| 日本vs亚洲vs韩国一区三区| 蜜桃传媒麻豆第一区在线观看| 久久狠狠婷婷| 91成人福利| 国产aⅴ精品一区二区四区| 福利一区二区免费视频| 免费久久99精品国产自在现线| 欧美日韩一区二区三区在线电影| 欧美日韩专区| 福利一区二区免费视频| 国产精品二区不卡| 一级欧洲+日本+国产| 91精品丝袜国产高跟在线| 国产精品成人3p一区二区三区| 久久久久久久性潮| 国产不卡人人| 视频一区国产视频| 黄色日韩在线| 久久一本综合| 青青草97国产精品麻豆| 日韩成人精品在线观看| 亚洲一区二区| 99精品热6080yy久久| 欧美一级鲁丝片| 亚洲自啪免费| 黄色成人精品网站| 欧美1区免费| 久久国产主播| 精品精品久久| 日韩亚洲精品在线观看| 国产精品一区二区三区av| 日本麻豆一区二区三区视频| 国产一区二区主播在线| 福利在线免费视频| 久久久久久久欧美精品 | 久久精品国产精品亚洲精品| 日韩毛片视频| 岛国av在线网站| 免费成人在线观看视频| 葵司免费一区二区三区四区五区| 亚洲欧美色图| 国产视频一区三区| 在线亚洲伦理| 视频一区二区中文字幕| 久久香蕉精品| 久久综合影音| 色777狠狠狠综合伊人| 国产精品精品| 在线最新版中文在线| 欧美激情偷拍自拍| 黑人巨大精品| 欧美少妇精品| 亚洲ww精品| 欧美aaa在线| 亚洲国产精品一区制服丝袜| 国产精品porn| 国产日产一区| 亚洲成人黄色| 久久婷婷一区| 黄色亚洲在线| 日韩av在线中文字幕| 国产精品黑丝在线播放| 自拍偷自拍亚洲精品被多人伦好爽| 国产精品久久亚洲不卡| 久久精品国产99国产精品| 亚洲精品少妇| 国精一区二区| 都市激情久久| 美女毛片一区二区三区四区| 亚洲免费综合| 日韩免费在线| 亚洲精品乱码| 麻豆精品国产| 国产伊人精品| 久久久久久久欧美精品 | 欧美在线免费一级片| 国内精品嫩模av私拍在线观看| 亚洲精品进入| 欧美综合另类| 人人狠狠综合久久亚洲| 狠狠久久伊人中文字幕| 伊人国产精品| 国产精品15p| 日韩视频在线一区二区三区 | 国产精品久久乐| 欧美日韩91| 成人在线免费观看91| 五月婷婷亚洲| 色小子综合网| 欧美aaa在线| 视频国产精品| 日韩亚洲国产欧美| 亚洲a∨精品一区二区三区导航| 欧美日韩 国产精品| 成人在线免费观看网站| 一本久久综合| www.26天天久久天堂| 国产精品777777在线播放 | 久久高清国产| 国产福利一区二区三区在线播放| 99精品在线免费观看| 99精品美女| 少妇视频在线观看| 亚洲日本中文| 一本久久青青| 日韩影院二区| 亚洲精品亚洲人成在线| 黄色成人精品网站| 久久精品久久综合| 少妇精品在线| 成人影视亚洲图片在线| 青青草97国产精品免费观看| 丁香五月缴情综合网| 日韩在线卡一卡二| 欧美日韩中文| 亚洲午夜在线| 久久99久久久精品欧美| jizz性欧美2| 久久影院午夜精品| 亚洲第一论坛sis| 最新精品国产| 日韩国产在线一| 麻豆一区二区| se01亚洲视频| 欧美三级在线| 日韩欧美午夜| 国产美女亚洲精品7777| 日韩综合在线| 久久精品九色| 蜜臀91精品一区二区三区| 91麻豆精品国产91久久久更新资源速度超快 | 首页国产欧美日韩丝袜| 综合久草视频| 9色精品在线| 亚洲资源在线| 免费看的黄色欧美网站| 中文在线播放一区二区| 亚洲欧洲日本一区二区三区| 日本欧美一区二区在线观看| 亚洲第一区色| 日本伊人精品一区二区三区观看方式| 精品久久ai电影| 97欧美成人| 天天操综合520| 日韩精品视频网| 精品日产免费二区日产免费二区| 深夜福利亚洲| 99精品一区| 亚洲毛片视频| 亚洲激情另类| 国产调教一区二区三区| 免费欧美日韩国产三级电影| 日韩a级大片| 亚洲第一av| 日韩精品网站| 麻豆一区二区在线| 国产视频一区免费看| 日韩有码中文字幕在线| 神马久久资源| 欧美国产91| 国产欧美日本| 国产精品25p| 日本电影一区二区| 国产精品va| 91一区二区| 久久久夜夜夜| 国产精品va| 国产精品久久久久蜜臀| 天堂日韩电影| 亚洲三级在线| 中文字幕在线看片| 欧美日韩一区二区综合 | 51亚洲精品| 久久精品亚洲| 日本一区二区在线看| 特黄特色欧美大片| 欧美影院在线| 四虎精品永久免费| 亚洲一区国产| 精品美女视频| 亚洲人成网站在线在线观看| 日本免费一区二区六区| 欧美先锋资源| 日韩精品福利一区二区三区| 亚洲高清国产拍精品26u| 好吊一区二区三区| 久久丁香四色| 麻豆传媒一区二区三区| 免费成人在线影院| 99精品视频在线| 国产精品2区|