加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做ECS34、C++編程設(shè)計(jì)代寫(xiě)

時(shí)間:2024-03-14  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



ECS34 WQ24 February 17, 2024
Project 4
1 of 9
Project 4
Due March 11, 2024 at 9:00 PM
You will be working with a partner for this project. This specification is subject to change at any
time for additional clarification.
Desired Outcomes
• Exposure to GoogleTest and Google Mock
• Exposure to Expat XML library
• Exposure to Open Street Map file formats
• Use of git repository
• Exposure to documenting code in Markdown
• An understanding of how to develop Makefiles that build and execute unit tests
• An understanding of delimiter-separated-value files
• An understanding of XML files
• An understanding of Dijkstra’s Algorithm
• An understanding of how to integrate a third-party C library in C++
Project Description
Navigation is a critical to modern society. Once source and destination coordinates are translated
to vertices, the shortest or fastest path can be calculated to route the user to their destination. The
goal of your project is to write a program that will be able to parse an OpenStreetMap (OSM) file
for an area and then to find shortest/fastest routes as fast as possible. Additionally, the goal is to
include multiple methods of transportation (biking vs walking and bus) in your search for fastest
routes. You will be building a program that can find paths, print and save them. You will be
building upon the classes from project 3. Some of the capabilities are extra credit, see the extra
credit section to determine what is required, and what is extra credit.
The CBusSystemIndexer class you will be developing will index the CBusSystem
information provided for ease of lookup of stops and routes. It will be helpful class in developing
some of the later components of the project.
// CBusSystemIndexer member functions
// Constructor for the Bus System Indexer
CBusSystemIndexer(std::shared_ptr<CBusSystem> bussystem);
// Destructor for the Bus System Indexer
~CBusSystemIndexer();
// Returns the number of stops in the CBusSystem being indexed
std::size_t StopCount() const noexcept;
// Returns the number of routes in the CBusSystem being indexed
std::size_t RouteCount() const noexcept;
ECS34 WQ24 February 17, 2024
Project 4
2 of 9
// Returns the SStop specified by the index where the stops are sorted by
// their ID, nullptr is returned if index is greater than equal to
// StopCount()
std::shared_ptr<SStop> SortedStopByIndex(std::size_t index) const noexcept;
// Returns the SRoute specified by the index where the routes are sorted by
// their Name, nullptr is returned if index is greater than equal to
// RouteCount()
std::shared_ptr<SRoute> SortedRouteByIndex(std::size_t index) const noexcept;
// Returns the SStop associated with the specified node ID, nullptr is
// returned if no SStop associated with the node ID exists
std::shared_ptr<SStop> StopByNodeID(TNodeID id) const noexcept;
// Returns true if at least one route exists between the stops at the src and
// dest node IDs. All routes that have a route segment between the stops at
// the src and dest nodes will be placed in routes unordered set.
bool RoutesByNodeIDs(TNodeID src, TNodeID dest,
 std::unordered_set<std::shared_ptr<SRoute> > &routes) const noexcept;
// Returns true if at least one route exists between the stops at the src and
// dest node IDs.
bool RouteBetweenNodeIDs(TNodeID src, TNodeID dest) const noexcept;
The CDijkstraPathRouter class you will be developing will implement the
CPathRouter abstract interface. The CDijkstraPathRouter class will find the shortest
path between source and destination vertices if one exists. At the core the shortest path finding
algorithm must utilize Dijkstra’s Algorithm, though you may optimize where available. The vertex
IDs do not have to match the node or stop IDs used by the other classes. You will need to write a
test program for the CDijkstraPathRouter.
// CDijkstraPathRouter member functions
// Constructor for the Dijkstra Path Router
CDijkstraPathRouter();
// Destructor for the Dijkstra Path Router
~CDijkstraPathRouter();
// Returns the number of vertices in the path router
std::size_t VertexCount() const noexcept;
// Adds a vertex with the tag provided. The tag can be of any type.
TVertexID AddVertex(std::any tag) noexcept;
// Gets the tag of the vertex specified by id if id is in the path router.
// A std::any() is returned if id is not a valid vertex ID.
std::any GetVertexTag(TVertexID id) const noexcept;
// Adds an edge between src and dest vertices with a weight of weight. If
// bidir is set to true an additional edge between dest and src is added. If
// src or dest nodes do not exist, or if the weight is negative the AddEdge
// will return false, otherwise it returns true.
bool AddEdge(TVertexID src, TVertexID dest, double weight, bool bidir =
 false) noexcept;
ECS34 WQ24 February 17, 2024
Project 4
3 of 9
// Allows the path router to do any desired precomputation up to the deadline
bool Precompute(std::chrono::steady_clock::time_point deadline) noexcept;
// Returns the path distance of the path from src to dest, and fills out path
// with vertices. If no path exists NoPathExists is returned.
double FindShortestPath(TVertexID src, TVertexID dest, std::vector<TVertexID>
 &path) noexcept;
The CDijkstraTransportationPlanner class you will be developing will implement
the CTransportationPlanner abstract interface. You will build upon the street map, bus
system, bus system indexer, and path router to implement the transportation planner. The
configuration of the transportation system will be provided as a parameter to the constructor.
// CDijkstraTransportationPlanner member functions
// Constructor for the Dijkstra Transportation Planner
CDijkstraTransportationPlanner(std::shared_ptr<SConfiguration> config);
// Destructor for the Dijkstra Transportation Planner
~CDijkstraTransportationPlanner();
// Returns the number of nodes in the street map
std::size_t NodeCount() const noexcept override;
// Returns the street map node specified by index if index is less than the
// NodeCount(). nullptr is returned if index is greater than or equal to
// NodeCount(). The nodes are sorted by Node ID.
std::shared_ptr<CStreetMap::SNode> SortedNodeByIndex(std::size_t index) const
 noexcept override;
// Returns the distance in miles between the src and dest nodes of the
// shortest path if one exists. NoPathExists is returned if no path exists.
// The nodes of the shortest path are filled in the path parameter.
double FindShortestPath(TNodeID src, TNodeID dest, std::vector< TNodeID >
 &path) override;
// Returns the time in hours for the fastest path between the src and dest
// nodes of the if one exists. NoPathExists is returned if no path exists.
// The transportation mode and nodes of the fastest path are filled in the
// path parameter.
double FindFastestPath(TNodeID src, TNodeID dest, std::vector< TTripStep >
 &path) override;
// Returns true if the path description is created. Takes the trip steps path
// and converts it into a human readable set of steps.
bool GetPathDescription(const std::vector< TTripStep > &path, std::vector<
 std::string > &desc) const override;
ECS34 WQ24 February 17, 2024
Project 4
4 of 9
The CTransportationPlannerCommandLine class you will be developing will
implement the command line interface for the transplanner program. The transplanner
program is a command line program that will take in commands and execute what is requested.
// CTransportationPlannerCommandLine member functions
// Constructor for the Transportation Planner Command Line
CTransportationPlannerCommandLine(std::shared_ptr<CDataSource> cmdsrc,
 std::shared_ptr<CDataSink> outsink,
 std::shared_ptr<CDataSink> errsink,
 std::shared_ptr<CDataFactory> results,
 std::shared_ptr<CTransportationPlanner> planner);
// Destructor for the Transportation Planner Command Line
~CTransportationPlannerCommandLine();
// Processes the commands input to the
bool ProcessCommands();
An example CSV and OSM file set will be provided, the files will be used in project 4. Your tests
should be built with them in mind, but you shouldn’t load the files as part of the tests.
The Makefile you develop needs to implement the following:
• Must create obj directory for object files (if doesn’t exist)
• Must create bin directory for binary files (if doesn’t exist)
• Must compile cpp files using C++17
• Must link string utils and string utils tests object files to make teststrutils executable
• Must link StringDataSource and StringDataSourceTest object files to make
teststrdatasource executable
• Must link FileDataSource, FileDataSink, FileDataFactory and
FileDataSSTest object files to make testfiledatass executable
• Must link StringDataSink and StringDataSinkTest object files to make
teststrdatasink executable
• Must link DSV reader/writer and DSV tests object files to make testdsv executable
• Must link XML reader/writer and XML tests object files to make testxml executable
• Must link KMLWriter and KMLTest object files to make testkml executable
• Must link CSVBusSystem and CSVBusSystem tests object files to make testcsvbs
executable
• Must link OpenStreetMap and OpenStreetMap tests object files to make testosm
executable
• Must link DijkstraPathRouter and DijkstraPathRouter tests object files to
make testdpr executable
• Must link BusSystemIndexer and CSVBusSystemIndexerTest object files to
make testcsvbsi executable
• Must link TransportationPlannerCommandLine and TPCommandLineTest
object files to make testtpcl executable
ECS34 WQ24 February 17, 2024
Project 4
5 of 9
• Must link CSVOSMTransportationPlannerTest,
DijkstraTransportationPlanner and other required object files to make
testtp executable
• Must execute the teststrutils, teststrdatasource, teststrdatasink,
testfiledatass, testdsv, testxml, testcsvbs, testosm, testdpr,
testcsvbsi, testtp, and testtpcl test executables
• Must build the transplanner and speedtest executables once all tests pass
• Must provide a clean that will remove the obj and bin directories
Provided Helper Classes/Tests
• FileDataSource, FileDataSink, and FileDataFactory provide classes for
accessing files/directories as sources/sinks
• StandardDataSource, StandardDataSink, and StandardDataErrorSink
provide classes for accessing standard I/O as sources/sinks
• STransportationPlannerConfig provides a basic implementation for the
configuration interface with the default assumptions
• GeographicUtils provides static methods for calculating distance, bearings, etc. and
will be necessary for calculating the shortest/fastest paths
• KMLWriter and kmlout files provide a class and program that can convert saved paths
into KML files that can be used on google maps
• CSVBusSystemIndexterTest, CSVOSMTransporationPlannerTest,
FileDataSSTest, and TPCommandLineTest provide google tests for much of what
you need to develop
Important Assumptions
• For shortest path assume only follow direction specified in the street map, so you can't go
backward along a "oneway"
• For fastest path, assume can walk both directions regardless of "oneway", bike/bus must
follow "oneway". Also, you cannot bike along paths that specify "bicycle" as "no"
• Assume busses route will take shortest path (don't worry about calculating fastest path)
• Walk speed must be taken from config WalkSpeed function (default is 3mph)
• Bike speed must be taken from config BikeSpeed function (default is 8mph)
• Bus follows speed limit and DefaultSpeedLimit function will provide the assumed
speed limit if the way does not specify it (default is 25 mph)
• You cannot take your bike on the bus, so if you take the bus you must walk to it
• When creating the path description:
o The direction must be based upon beginning point on a street to the end point of
travelling on the street, not the beginning point and the next point
o The direction is listed as along if the street name is known, and toward if the street
name is not known, but the next street is known
o When there are multiple options for taking a bus, the bus that will go the furthest
will be taken. If multiple options are available, the bus with the earliest sorted name
will be taken
ECS34 WQ24 February 17, 2024
Project 4
6 of 9
You must have a docs directory that contains Markdown (.md) files that document the
CPathRouter, CDijkstraPathRouter, CTransportationPlanner,
CDijkstraTransportationPlanner, and
CTransportationPlannerCommandLine classes and their use. The documentation of
each class and function should be consistent. Code examples are excellent for documenting the
use of the developed classes.
You can unzip the given tgz file with utilities on your local machine, or if you upload the file to
the CSIF, you can unzip it with the command:
tar -xzvf proj4given.tgz
You must submit the source file(s), your Makefile, README file, and .git directory in a tgz
archive. Do a make clean prior to zipping up your files so the size will be smaller. You can tar
gzip a directory with the command:
tar -zcvf archive-name.tgz directory-name
A working example can be found on the CSIF in /home/cjnitta/ecs34/transplanner.
Your program is expected to have the same interface as the working example. The full interface
can be listed by typing help after launching the program. A program that can convert saved paths
into KML files has also been provided /home/cjnitta/ecs34/kmlout. Directions of how
to view a KML file in google maps can be found at https://youtu.be/1HqQuHeGa38.
You should avoid using existing source code as a primer that is currently available on the Internet.
You must specify in your readme file any sources of code that you have viewed to help you
complete this project. All class projects will be submitted to MOSS to determine if students have
excessively collaborated. Excessive collaboration, or failure to list external code sources will result
in the matter being referred to Student Judicial Affairs.
Recommended Approach
The recommended approach is as follows:
1. Create a git repository and add your project 3 and provided files.
2. Update your project 3 Makefile to meet the specified requirements. The order of the tests
to be run should the teststrutils, teststrdatasource, teststrdatasink,
testfiledatass, testdsv, testxml, testcsvbs, testosm, testdpr,
testcsvbsi, testtp, and testcl
3. Verify that your string utils, string data source, string data sink, file data source/sink, DSV
reader, DSV writer, XML reader, XML writer, CSV Bus System, OSM, KML writer, tests
all compile, run and pass.
4. Create the files and skeleton functions for BusSystemIndexer.cpp, DijkstraPathRouter.cpp,
DijkstraPathRouterTest.cpp, DijkstraTransportationPlanner.cpp,
TransportationPlannerCommandLine.cpp and transplanner.cpp.
ECS34 WQ24 February 17, 2024
Project 4
7 of 9
5. Write tests for the CDijkstraPathRouter class. Each test you write should fail, make
sure to have sufficient coverage of the possible data input. This will complete the test files
as others will be provided for you.
6. Once tests have been written that fail with the initial skeleton functions, begin writing your
CBusSystemIndexer functions. It should be noted that since the
CBusSystemIndexer, CDijkstraPathRouter, and
CTransportationPlannerCommandLine classes do not rely on one another for
testing, they could potentially be done in any order.
7. Once the CBusSystemIndexer class is complete, begin writing your
CDijkstraPathRouter functions.
8. Once the CDijkstraPathRouter class is complete, begin writing your
CDijkstraTransportationPlanner functions.
NOTE: the GetPathDescription function is extra credit!
9. Once the CDijkstraTransportationPlanner class is complete, begin writing
your CTransportationPlannerCommandLine functions.
10. Once the CTransportationPlannerCommandLine and
CDijkstraTransportationPlanner classes are complete, begin writing the
transplanner program. There will be requirement to parse the command arguments
but setting up of the config to create the CTransportationPlannerCommandLine
is mainly what is needed.
Grading
The point breakdown can be seen in the table below. Make sure your code compiles on the CSIF
as that is where it is expected to run. You will make an interactive grading appointment to have
your assignment graded. You must have a working webcam for the interactive grading
appointment. Project submissions received 24hr prior to the due date/time will received 10% extra
credit. The extra credit bonus will drop off at a rate of 0.5% per hour after that, with no additional
credit being received for submissions within 4hr of the due date/time.
Points Description
10 Has git repository with appropriate number of commits
5 Has Makefile and submission compiles
5 Makefile meets specified requirements
5 Has DijkstraPathRouter google tests that fail with initial skeleton
functions
5 Student DijkstraPathRouter google tests have reasonable coverage
5 Google tests detect errors in instructor buggy code
5 BusSystemIndexer functions pass all tests
5 DijkstraPathRouter pass all student tests
5 DijkstraPathRouter pass all instructor tests
5 DijkstraTransportationPlanner pass all tests (except path description)
5 TransportationPlannerCommandLine pass all tests
5 transplanner fully functional (except print)
5 speedtest fully functional and performs at least at baseline speed
ECS34 WQ24 February 17, 2024
Project 4
8 of 9
10 Code is properly commented with consistent conventions
10 Documentation of classes is consistent and complete
10 Student understands all code they have provided
Extra Credit
There are two opportunities for extra credit on Project 4: Path Description and Speed Performance.
(Up to 25% extra) Path Description
Successfully implement the GetPathDescription function of the
CDijkstraTransportationPlanner class. Must pass all tests, and transplanner
must print the path as the provided version does for the same input.
(Up to 25% extra) Speed Performance
The speed test will test the speed of your CDijkstraTransportationPlanner against the
baseline code. The idea is that your program would be part of a server that would be rebooted daily
and then would handle as many queries as possible. The more queries your program can handle in
a day, the fewer servers that would need to be in operation to handle the daily load. Your program
will have a maximum of 30s to load the data and do any precomputation necessary to start handling
the requests.
A speedtest program has been provide for the baseline (speedtest_baseline) and the
optimized version (speedtest_optimized). The program will output the number of queries
that could be completed in 24hr, it will also output a brief of the path distances/times. A
speedtest.cpp source file that will calculate the number of queries has been provided. Do not
modify the speedtest.cpp when constructing your speedtest program. A verbose listing
of the paths can be created with the --verbose option. Speed comparisons will be done with
compiler optimizations disabled. If your implementation outperforms the baseline
speedtest_baseline, some extra credit will be available. The goal for full extra credit is to
outperform the speedtest_optimized.
Helpful Hints
• Read through the guides that are provided on Canvas
• See http://www.cplusplus.com/reference/, it is a good reference for C++ built in functions
and classes
• Use lenth(), substr(), etc. from the string class whenever possible.
• If the build fails, there will likely be errors, scroll back up to the first error and start from
there.
• You may find the following line helpful for debugging your code:
std::cout<<__FILE__<<" @ line: "<<__LINE__<<std::endl;
It will output the line string "FILE @ line: X" where FILE is the source filename and
X is the line number the code is on. You can copy and paste it in multiple places and it will
output that particular line number when it is on it.
ECS34 WQ24 February 17, 2024
Project 4
9 of 9
• Make sure to use a tab and not spaces with the Makefile commands for the target
• make will not warn about undefined variables by default, you may find the
--warn-undefined-variables option very helpful
• The debug option for make can clarify which targets need to be built, and which are not.
The basic debugging can be turned on with the --debug=b option. All debugging can be
turned on with the --debug=a option.
• Make sure to use a.gitignore file to ignore your object files, and output binaries.
• Do not wait to the end to merge with you partner. You should merge your work together
on a somewhat regular basis (or better yet pair program).
• Use CStringDataSource and CStringDataSink to test your reader and writer
classes for DSV and XML.
• You will probably want to use static functions in your classes for the callbacks to the library
calls that require callbacks. The call data (void *) parameter that the functions take and
the callbacks pass back as a parameter, should be this from your object.
• You may find https://www.xml.com/pub/1999/09/expat/index.html helpful for describing
the libexpat functions. You are not going to need to use every function in the Expat library.
• The OSM XML file format is described https://wiki.openstreetmap.org/wiki/OSM_XML.
Though not necessarily important for this project, the tag features are described are
https://wiki.openstreetmap.org/wiki/Map_features.
• Use the --gtest_output=xml:filename to create test results files that can be used
to prevent rerunning tests that have already succeeded.
• Use the --gtest_filter=-Test.Subtest1:Test.Subtest2 to skip google
tests that won’t pass. This can be helpful for skipping say the
CSVOSMTransporationPlanner.PathDescription test that is extra credit.
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:COMP9021代寫(xiě)、Python程序設(shè)計(jì)代做
  • 下一篇:8PRO102代寫(xiě)、代做C++程序語(yǔ)言
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶(hù)要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    亚洲综合色站| 三级精品视频| 日韩中文字幕高清在线观看| 99久久久国产精品美女| 一区二区自拍| 亚洲人成亚洲精品| 国产精品亚洲一区二区三区在线观看| 天堂综合网久久| 亚洲人成网亚洲欧洲无码| 亚洲高清国产拍精品26u| 午夜欧美精品久久久久久久| 精品麻豆剧传媒av国产九九九| 国产精品久久久久毛片大屁完整版 | 欧美中文一区| 色综合综合网| 欧美日韩 国产精品| 婷婷久久综合九色综合99蜜桃| 老司机久久99久久精品播放免费| 久久激情网站| 一区二区三区在线资源| 国产精品欧美日韩一区| 日日夜夜精品视频免费| 日韩在线观看一区| 蜜臀精品一区二区三区在线观看 | 日韩精品免费一区二区在线观看| 精品一区二区三区在线观看视频| 日韩国产精品久久久| www成人在线视频| 欧美激情欧美| 丝袜亚洲另类丝袜在线| a91a精品视频在线观看| 在线日韩av| 欧美91在线| 精品视频高潮| 高潮久久久久久久久久久久久久| 天美av一区二区三区久久| 午夜天堂精品久久久久| 麻豆精品国产91久久久久久| 日本在线中文字幕一区二区三区| a在线视频v视频| 免费观看一级特黄欧美大片| 一本久道久久综合狠狠爱| 极品日韩av| 欧美福利影院| 亚洲一级影院| 国精品一区二区三区| 久久人人97超碰国产公开结果| 99re热精品视频| 911精品国产| 91亚洲精品视频在线观看| 日韩a级大片| 日韩va欧美va亚洲va久久| 久久综合欧美| 日韩精品免费视频一区二区三区| 五月激激激综合网色播| 亚洲图区在线| 日韩成人一级片| 麻豆视频久久| 欧美国产极品| 激情欧美一区| 一区二区自拍| 免费xxxx性欧美18vr| 国产精品国产三级国产在线观看| 乱人伦视频在线| 暖暖成人免费视频| 色999久久久精品人人澡69| 日韩精品亚洲一区二区三区免费| 老司机精品视频一区二区三区| 国色天香一区二区| 日韩成人午夜| 美女福利一区| 亚洲精品成人| 免费精品视频在线| 日韩制服一区| 一区二区免费不卡在线| 亚洲美女久久| 老牛国内精品亚洲成av人片| 国产高清一区| 国产精品久久观看| 成人亚洲综合| 亚洲一区色图| 97久久亚洲| 欧美日韩精品免费观看视频完整| 蜜臀久久久久久久| 久久久久久久性潮| 国产精品亚洲一区二区在线观看| 日韩一二三区在线观看| 欧美不卡视频| 亚洲深夜视频| 老司机免费视频一区二区| 亚洲精品**不卡在线播he| 日本精品影院| 久久一本综合频道| 日本久久一区| 国产一区日韩| 亚洲无线视频| 成人一区不卡| 三级精品在线观看| 日本亚洲免费观看| 女人香蕉久久**毛片精品| 欧美日韩在线观看首页| 国色天香一区二区| 精品产国自在拍| 日韩在线播放一区二区| 美女在线视频一区| 日本人妖一区二区| 黑丝一区二区三区| 亚洲精品tv| 日本高清精品| 午夜在线播放视频欧美| 久久精品麻豆| 国产精品午夜av| 日韩中文欧美在线| 麻豆精品久久精品色综合| 欧美视频不卡| 欧美黄色大片在线观看| 久久久久影视| 免费国产自久久久久三四区久久| 亚洲午夜天堂| 日韩av一级片| 日韩中文字幕91| 99国内精品久久久久| 99久久影视| 素人一区二区三区| 一区二区三区亚洲变态调教大结局| 免费日韩精品中文字幕视频在线| 国产精品一区毛片| 精品视频网站| 日韩在线短视频| 亚洲精品一二三**| caoporn视频在线| 日本天堂一区| 老司机午夜精品视频| 最新亚洲国产| 黄色一区二区三区四区| 日韩精品欧美精品| 亚洲高清久久| 青青草伊人久久| 九九综合在线| 亚洲国产一区二区三区高清| 激情久久久久久久| 三级久久三级久久久| 激情一区二区| 欧美韩日精品| 最新成人av网站| 中文一区一区三区免费在线观看| 欧洲杯什么时候开赛| 一区二区三区四区五区精品视频| 精品网站aaa| 日韩成人综合网| 国精品一区二区三区| 久久精品毛片| 亚洲成人免费| 成人在线视频区| 美国欧美日韩国产在线播放| 国产区精品区| 欧美激情电影| 国产精品sss在线观看av| av一区在线播放| 国产一区美女| 国产精品久久久久久av公交车 | 999在线精品| 欧美日韩精品一区二区三区视频| 精品99久久| 麻豆传媒一区二区三区| 日韩午夜在线| 日韩av高清在线观看| 日本一区二区三区视频在线| 天天躁日日躁狠狠躁欧美| 欧美激情亚洲| 免费精品视频最新在线| 91精品丝袜国产高跟在线| 日韩欧乱色一区二区三区在线| 欧美 日韩 国产一区二区在线视频 | 麻豆传媒一区二区三区| 中国女人久久久| 中文字幕视频精品一区二区三区| a屁视频一区二区三区四区| 亚洲精品tv久久久久久久久久| 久久最新网址| 国产精品麻豆成人av电影艾秋| 伊人久久成人| 亚洲精品aⅴ| 日本不卡不码高清免费观看| 西西裸体人体做爰大胆久久久| 在线综合色站| 麻豆一区二区三区| av中文字幕在线观看第一页| 久久精品国产大片免费观看| 国语精品视频| 国内精品伊人| 免费观看日韩电影| 91精品综合| 亚洲小说图片| 日日夜夜精品免费视频| segui88久久综合9999| 欧美亚洲激情| 在线综合色站| 精品一区二区三区中文字幕视频| 青青久久精品|