加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CEG5301代做、MATLAB編程語言代寫

時間:2024-03-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CEG5301 Machine Learning with Applications:
Part I: Homework #3
Important note: the due date is 17/03/2024. Please submit the softcopy of your report
to the submission folder in CANVAS. Late submission is not allowed unless it is well
justified. Please supply the MATLAB code or Python Code in your answer if computer
experiment is involved.
Please note that the MATLAB toolboxes for RBFN and SOM are not well developed.
Please write your own codes to implement RBFN and SOM instead of using the
MATLAB toolbox.
Q1. Function Approximation with RBFN (10 Marks)
Consider using RBFN to approximate the following function:
𝑦𝑦 = 1.2 sin(𝜋𝜋𝜋𝜋) − cos(2.4𝜋𝜋𝜋𝜋) , 𝑓𝑓𝑓𝑓𝑓𝑓 w**9;w**9; ∈ [−1.6, 1.6]
The training set is constructed by dividing the range [−1.6, 1.6] using a uniform step
length 0.08, while the test set is constructed by dividing the range [−1.6, 1.6] using
a uniform step length 0.01. Assume that the observed outputs in the training set are
corrupted by random noise as follows.
𝑦𝑦(𝑖𝑖) = 1.2 sin 𝜋𝜋𝜋𝜋(𝑖𝑖)  − cos 2.4𝜋𝜋𝜋𝜋(𝑖𝑖)  + 0.3𝑛𝑛(𝑖𝑖)
where the random noise 𝑛𝑛(𝑖𝑖) is Gaussian noise with zero mean and stand deviation of
one, which can be generated by MATLAB command randn. Note that the test set is not
corrupted by noises. Perform the following computer experiments:
a) Use the exact interpolation method (as described on pages 17-26 in the slides of
lecture five) and determine the weights of the RBFN. Assume the RBF is Gaussian
function with standard deviation of 0.1. Evaluate the approximation performance of
the resulting RBFN using the test set.
 (3 Marks)
b) Follow the strategy of “Fixed Centers Selected at Random” (as described on page 38
in the slides of lecture five), randomly select 20 centers among the sampling points.
Determine the weights of the RBFN. Evaluate the approximation performance of the
resulting RBFN using test set. Compare it to the result of part a).
(4 Marks)
c) Use the same centers and widths as those determined in part a) and apply the
regularization method as described on pages 43-46 in the slides for lecture five. Vary
the value of the regularization factor and study its effect on the performance of RBFN.
(3 Marks)
2
Q2. Handwritten Digits Classification using RBFN (20 Marks)
In this task, you will build a handwritten digits classifier using RBFN. The training data
is provided in MNIST_M.mat. Each binary image is of size 28*28. There are 10
classes in MNIST_M.mat; please select two classes according to the last two different
digits of your matric number (e.g. A0642311, choose classes 3 and 1; A1234567,
choose classes 6 and 7). The images in the selected two classes should be assigned the
label “1” for this question’s binary classification task, while images in all the remaining
eight classes should be assigned the label “0”. Make sure you have selected the correct
2 classes for both training and testing. There will be some mark deduction for wrong
classesselected. Please state your handwritten digit classes for both training and testing.
In MATLAB, the following code can be used to load the training and testing data:
-------------------------------------------------------------------------------------------------------
load mnist_m.mat;
% train_data  training data, 784x1000 matrix
% train_classlabel  the labels of the training data, 1x1000 vector
% test_data  test data, 784x250 matrix
% train_classlabel  the labels of the test data, 1x250 vector
-------------------------------------------------------------------------------------------------------
After loading the data, you may view them using the code below:
-------------------------------------------------------------------------------------------------------
tmp=reshape(train_data(:,column_no),28,28);
imshow(tmp);
-------------------------------------------------------------------------------------------------------
To select a few classes for training, you may refer to the following code:
-------------------------------------------------------------------------------------------------------
trainIdx = find(train_classlabel==0 | train_classlabel==1 | train_classlabel==2); % find the
location of classes 0, 1, 2
Train_ClassLabel = train_classlabel(trainIdx);
Train_Data = train_data(:,trainIdx);
-------------------------------------------------------------------------------------------------------
Please use the following code to evaluate:
-------------------------------------------------------------------------------------------------------
TrAcc = zeros(1,1000);
TeAcc = zeros(1,1000);
thr = zeros(1,1000);
TrN = length(TrLabel);
TeN = length(TeLabel);
for i = 1:1000
 t = (max(TrPred)-min(TrPred)) * (i-1)/1000 + min(TrPred);
 thr(i) = t;

TrAcc(i) = (sum(TrLabel(TrPred<t)==0) + sum(TrLabel(TrPred>=t)==1)) / TrN;
TeAcc(i) = (sum(TeLabel(TePred<t)==0) + sum(TeLabel(TePred>=t)==1)) / TeN;
end
3
plot(thr,TrAcc,'.- ',thr,TeAcc,'^-');legend('tr','te');
-------------------------------------------------------------------------------------------------------
TrPred and TePred are determined by TrPred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TrData(: , j)) Ү**;Ү**;
𝑖𝑖=0 and
TePred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TeData(: , j)) Ү**;Ү**;
𝑖𝑖=0 where Ү**;Ү**; is the number of hidden neurons.
TrData and TeData are the training and testing data selected based on your matric
number. TrLabel and TeLabel are the ground-truth label information (Convert to {0,1}
before use!).
You are required to complete the following tasks:
a) Use Exact Interpolation Method and apply regularization. Assume the RBF is
Gaussian function with standard deviation of 100. Firstly, determine the weights of
RBFN without regularization and evaluate its performance; then vary the value of
regularization factor and study its effect on the resulting RBFNs’ performance.
(6 Marks)

b) Follow the strategy of “Fixed Centers Selected at Random” (as described in page 38
of lecture five). Randomly select 100 centers among the training samples. Firstly,
determine the weights of RBFN with widths fixed at an appropriate size and compare
its performance to the result of a); then vary the value of width from 0.1 to 10000 and
study its effect on the resulting RBFNs’ performance.
(8 Marks)

c) Try classical “K-Mean Clustering” (as described in pages 39-40 of lecture five) with
2 centers. Firstly, determine the weights of RBFN and evaluate its performance; then
visualize the obtained centers and compare them to the mean of training images of each
class. State your findings.
(6 Marks)
4
Q3. Self-Organizing Map (SOM) (20 Marks)
a) Write your own code to implement a SOM that maps a **dimensional output layer
of 40 neurons to a “hat” (sinc function). Display the trained weights of each output
neuron as points in a 2D plane, and plot lines to connect every topological adjacent
neurons (e.g. the 2nd neuron is connected to the 1st and 3rd neuron by lines). The training
points sampled from the “hat” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
x = linspace(-pi,pi,400);
trainX = [x; sinc(x)];  2x400 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(3 Marks)
b) Write your own code to implement a SOM that maps a 2-dimensional output layer
of 64 (i.e. 8×8) neurons to a “circle”. Display the trained weights of each output neuron
as a point in the 2D plane, and plot lines to connect every topological adjacent neurons
(e.g. neuron (2,2) is connected to neuron (1,2) (2,3) (3,2) (2,1) by lines). The training
points sampled from the “circle” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
X = randn(800,2);
s2 = sum(X.^2,2);
trainX = (X.*repmat(1*(gammainc(s2/2,1).^(1/2))./sqrt(s2),1,2))';  2x800 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(4 Marks)
c) Write your own code to implement a SOM that clusters and classifies handwritten
digits. The training data is provided in Digits.mat. The dataset consists of images in 5
classes, namely 0 to 4. Each image with the size of 28*28 is reshaped into a vector and
stored in the Digits.mat file. After loading the mat file, you may find the 4 matrix/arrays,
which respectively are train_data, train_classlabel, test_data and test_classlabel. There
are totally 1000 images in the training set and 100 images in the test set. Please omit 2
classes according to the last digit of your matric number with the following rule:
omitted class1 = mod(the last digit, 5), omitted_class2 = mod(the last digit+1, 5). For
example, if your matric number is A06423**, ignore classes mod(7,5)=2 and
mod(8,5)=3; A1234569, ignore classes 4 and 0.
Thus, you need to train a model for a 3-classes classification task. Make sure you have
selected the correct 3 classes for both training and testing. There will be some mark
deduction for wrong classes selected. Please state your handwritten digit classes for
both training and testing.
After loading the data, complete the following tasks:
c-1) Print out corresponding conceptual/semantic map of the trained SOM (as
described in page 24 of lecture six) and visualize the trained weights of each output
neuron on a 10×10 map (a simple way could be to reshape the weights of a neuron
5
into a 28×28 matrix, i.e. dimension of the inputs, and display it as an image). Make
comments on them, if any.
(8 Marks)
c-2) Apply the trained SOM to classify the test images (in test_data). The
classification can be done in the following fashion: input a test image to SOM, and
find out the winner neuron; then label the test image with the winner neuron’s label
(note: labels of all the output neurons have already been determined in c-1).
Calculate the classification accuracy on the whole test set and discuss your
findings.
(5 Marks)
The recommended values of design parameters are:
1. The size of the SOM is 1×40 for a), 8×8 for b), 10×10 for c).
2. The total iteration number N is set to be 500 for a) & b), 1000 for c). Only the
first (self-organizing) phase of learning is used in this experiment.
3. The learning rate 𝜂𝜂(𝑛𝑛) is set as:
𝜂𝜂(𝑛𝑛) = 𝜂𝜂0 exp  − 𝑛𝑛
𝜏𝜏2
  , 𝑛𝑛 = 0,1,2, …
where 𝜂𝜂0 is the initial learning rate and is set to be 0.1, 𝜏𝜏2 is the time constant
and is set to be N.
4. The time-varying neighborhood function is:
ℎ𝑗𝑗,𝑖𝑖(w**9;w**9;)(𝑛𝑛) = exp  − 𝑑𝑑𝑗𝑗,𝑖𝑖
2
2ҵ**;ҵ**;(𝑛𝑛)2  , 𝑛𝑛 = 0,1,2, …
where 𝑑𝑑𝑗𝑗,𝑖𝑖 is the distance between neuron j and winner i, ҵ**;ҵ**;(𝑛𝑛) is the effective
width and satisfies:
ҵ**;ҵ**;(𝑛𝑛) = ҵ**;ҵ**;0 exp  − 𝑛𝑛
𝜏𝜏1
  , 𝑛𝑛 = 0,1,2, …
where ҵ**;ҵ**;0 is the initial effective width and is set according to the size of output
layer’s lattice, 𝜏𝜏1 is the time constant and is chosen as 𝜏𝜏𝑖𝑖 = Ү**;Ү**;
log(ҵ**;ҵ**;0)
.
Again, please feel free to experiment with other design parameters which may be
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP26020、代做c/c++,Java編程設計
  • 下一篇:代寫ACS130、代做C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩另类视频| www.一区| 祥仔av免费一区二区三区四区| 国产精品22p| 午夜在线播放视频欧美| 国产精品久久久久久久久免费高清 | 精品极品在线| 国产美女精品视频免费播放软件| 亚洲免费一区三区| 人禽交欧美网站| 国产精品视频一区二区三区| 国产在线观看www| 欧美男gay| 一区在线免费| 欧美激情1区2区| av一区二区高清| 国产精品久久久久久模特| 亚洲国产欧美在线观看| 久久精品一区二区国产| av资源网在线播放| 野花国产精品入口| 国内精品亚洲| 日韩和的一区二在线| 亚洲一区二区三区高清| 久久精选视频| 久久尤物视频| segui88久久综合9999| 激情久久一区| 一区二区三区四区在线观看国产日韩 | 99精品视频免费| 久久精品不卡| 久久精品女人| 在线一区视频观看| 日本一区二区三区视频| 精品午夜视频| 精精国产xxx在线视频app| 日产精品一区二区| av成人国产| 好吊视频一区二区三区四区| 久久久成人网| 久久久久久毛片免费看 | 91精品在线免费视频| 伊人精品在线| 欧洲毛片在线视频免费观看| 999精品色在线播放| 成人午夜大片| 成人综合久久| 免费在线亚洲| 一本综合久久| 久久精品日产第一区二区 | 亚洲少妇视频| 男人的天堂免费在线视频| 国产精品vvv| 97精品在线| 中文字幕这里只有精品| www.爱久久| 日韩中文一区二区| 欧美一区影院| 国产日韩欧美| 亚洲久久成人| 日韩欧美自拍| 一本色道久久| 久久亚洲视频| 久久亚洲影视| 国产综合婷婷| 偷拍欧美精品| 国产免费成人| 免费高清成人在线| а√天堂8资源在线| 第四色男人最爱上成人网| 韩国女主播一区二区| 美女视频一区二区三区| 麻豆精品在线视频| 美女福利一区二区| 欧美亚洲人成在线| 日本在线播放一区二区三区| 亚洲三级观看| 亚洲成aⅴ人片久久青草影院| 国产精品色婷婷在线观看| 亚洲裸色大胆大尺寸艺术写真| 日韩—二三区免费观看av| 青青草成人在线观看| 国内精品久久久久久久97牛牛| 伊人久久大香伊蕉在人线观看热v 伊人久久大香线蕉综合影院首页 伊人久久大香 | 国内露脸中年夫妇交换精品| 99久久99热这里只有精品| 天天天综合网| 欧美激情理论| 久久国产日韩欧美精品| 欧美三级一区| 国内精品免费| 99在线热播精品免费99热| av在线视屏| 一区二区福利| 奇米亚洲欧美| 婷婷成人综合| 国产精品久久久久久影院8一贰佰 国产精品久久久久久麻豆一区软件 | 日韩综合一区二区三区| 久久香蕉国产| 国产精品伦理久久久久久| 久久精品国产成人一区二区三区| 97久久中文字幕| 香蕉成人app| 亚洲视频1区| 91tv亚洲精品香蕉国产一区| 成人在线啊v| 少妇精品导航| 91日韩视频| 麻豆久久久久久久| 欧美日韩一区二区三区不卡视频| a91a精品视频在线观看| 国产精品成人国产| 日韩精品欧美大片| 日韩视频在线一区二区三区| 蜜桃精品在线| 欧美精美视频| 夜夜精品视频| 亚洲精品黄色| 久久婷婷丁香| 三级在线观看视频| 久久综合亚洲| 国产午夜精品一区二区三区欧美| 国产福利一区二区三区在线播放| 国产探花在线精品一区二区| 伊人久久大香伊蕉在人线观看热v 伊人久久大香线蕉综合影院首页 伊人久久大香 | 久久成人在线| 国内一区二区三区| 欧美手机在线| 福利一区视频| 都市激情亚洲欧美| 国产理论在线| 无码少妇一区二区三区| 亚洲综合精品| 中文在线日韩| 在线国产一区二区| 蜜桃av综合| 亚洲日本中文| 日韩一级网站| 欧美日韩1区| 亚洲女同中文字幕| 日本不卡视频在线| re久久精品视频| 欧美aaaaa成人免费观看视频| 国产精品tv| 日韩另类视频| 日韩精品首页| 欧美一区影院| 亚洲精品国产偷自在线观看| 国产伦理一区| 欧美日韩hd| 综合亚洲视频| 中日韩视频在线观看| 国产一区二区三区视频在线| 亚洲一区二区三区高清| 国产欧美日韩在线一区二区| 久久成人国产| 91成人午夜| 亚洲伦乱视频| 99久久综合| 亚洲精品护士| 蜜乳av一区二区三区| 日韩 欧美一区二区三区| 国产精品久久观看| 精品久久国产| 日韩和欧美一区二区三区| 很黄很黄激情成人| 国产中文精品久高清在线不| 蜜臀91精品一区二区三区| 日本久久伊人| 高清av一区| 91精品二区| 国产精品嫩模av在线| 中文字幕成在线观看| 欧美黑人巨大videos精品| 国产亚洲精品精品国产亚洲综合| 99热国内精品| 一区二区中文字| 蜜桃视频在线一区| 国产丝袜一区| 伊人久久综合网另类网站| 91av亚洲| 欧洲毛片在线视频免费观看| 国产中文精品久高清在线不| 日本少妇一区| 亚洲激情五月| 日韩高清在线观看一区二区| 成人黄色免费观看| 久久亚洲国产精品一区二区| 欧美三区不卡| 欧美日韩 国产精品| а√天堂8资源在线| 激情欧美丁香| 青草伊人久久| 国内精品久久久久久久影视麻豆| 综合日韩av| 伊人久久大香线蕉av超碰演员| 日韩精品中文字幕吗一区二区| 一区二区动漫| 中文在线а√天堂| 亚洲精品中文字幕乱码|