加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    另类综合日韩欧美亚洲| 91麻豆精品国产91久久久平台| 深夜福利亚洲| 99视频精品全国免费| 免费视频一区二区三区在线观看| 欧美亚洲激情| 国产精品成人3p一区二区三区 | 久久99高清| 久草在线中文最新视频| 亚洲精品a区| 日本一区二区三区视频在线| 欧美有码在线| 欧美日本中文| 欧美xxxx中国| 国产91精品对白在线播放| 国内在线观看一区二区三区| 日韩av二区| 午夜日韩影院| 国产一区二区三区成人欧美日韩在线观看 | 一区二区免费| 国产精品视频一区二区三区综合| 日韩国产在线| 日韩精品一级二级 | 爽爽淫人综合网网站| 小说区图片区色综合区| 日韩一级淫片| 国产精品一线天粉嫩av| 麻豆成人久久精品二区三区红 | 国产精品13p| 最新成人av网站| 久久久久久久久国产一区| 视频二区欧美| 亚洲动漫在线观看| 韩国三级成人在线| 在线看片欧美| 欧美在线高清| 国产成人精品一区二区三区在线 | 先锋影音国产精品| 欧美黄色精品| 亚洲久久一区| 日韩高清不卡在线| 国产精品一页| 久久久久黄色| 久久精品国产福利| 国产精品麻豆成人av电影艾秋| 日本三级一区| 日本美女一区| 日韩免费福利视频| 伊人久久av| 成人三级高清视频在线看| 日韩影院精彩在线| 免费成人小视频| 蜜桃一区二区三区四区| 美女久久一区| 免费观看成人av| 成人精品电影| 最新中文字幕在线播放| 免费在线看成人av| 色喇叭免费久久综合| 蜜桃av噜噜一区| а√天堂8资源中文在线| 视频在线不卡免费观看| 久草在线中文最新视频| 在线一区视频观看| 九九久久国产| 麻豆精品一区二区综合av| 国内视频精品| 粉嫩一区二区三区在线观看| 疯狂欧洲av久久成人av电影| 亚洲福利网站| 成人h动漫免费观看网站| 视频福利一区| 天天天综合网| 久久午夜影视| 亚洲天堂av影院| 亚洲a成人v| 国产精品大片| 国产中文精品久高清在线不| 国产日本亚洲| 亚洲高清成人| 久久不射2019中文字幕| 久久爱91午夜羞羞| 久久国产生活片100| 欧美激情四色| 日本在线一区二区三区| 日韩精品水蜜桃| 欧美日韩国产综合网| 国产精品久久久久久久久久10秀| 国产 日韩 欧美一区| 麻豆成人久久精品二区三区红| 一区二区三区国产精华| 9l亚洲国产成人精品一区二三| 欧美成人基地| 亚洲免费中文| 亚洲精品国产嫩草在线观看| 欧美日韩亚洲一区二区三区在线| 亚洲国产合集| 久久视频精品| 麻豆精品网站| 久久久免费人体| 国产一区二区三区亚洲综合 | 日欧美一区二区| 国产精品日本一区二区三区在线| 北条麻妃一区二区三区在线| 亚洲欧洲一区| 91av一区| 日韩电影免费在线观看网站| 国内成人在线| 欧美gv在线观看| 欧美日本中文| 中文字幕亚洲影视| 国产精品久久久久一区二区三区厕所| 午夜av成人| 综合亚洲自拍| 亚洲国产不卡| 成人在线视频免费看| 亚洲盗摄视频| 狠狠综合久久av一区二区老牛| 日本综合视频| 无码少妇一区二区三区| 狠狠色狠狠色综合日日tαg| 91成人在线| 色妞ww精品视频7777| 亚洲精品1234| 久久一区二区三区四区五区| 91精品日本| 国产精品毛片久久| 国产在线不卡一区二区三区| 激情亚洲网站| 国精品产品一区| 高清一区二区三区| 欧美gay男男猛男无套| 亚洲精品自拍| 在线 亚洲欧美在线综合一区| 精品国产黄a∨片高清在线| 国产美女亚洲精品7777| 蜜桃av一区二区三区| 中文成人在线| 狠狠色综合网| 欧美日本在线| 希岛爱理av一区二区三区| 久久精品 人人爱| 四虎884aa成人精品最新| 日韩精品专区| 97se亚洲| 国产一区一一区高清不卡| 日本免费一区二区视频| 黄视频免费在线看| 久久69av| 久久r热视频| y111111国产精品久久久| 亚洲国产欧美日本视频| 日韩成人av影视| 色综合色综合| 激情视频亚洲| 蜜桃av在线| 久久久精品午夜少妇| 丰满少妇一区| 加勒比久久综合| 亚洲精品专区| 性色一区二区| 婷婷亚洲精品| 自拍偷自拍亚洲精品被多人伦好爽| 日韩欧美中文在线观看| 日韩欧美精品综合| 色88888久久久久久影院| 一区二区黄色| 一本色道久久综合亚洲精品高清| 国产成人视屏| 美国毛片一区二区三区| 一区二区中文字幕在线观看| 日韩欧美午夜| 亚洲手机视频| 国产精品美女久久久久久不卡| 美国欧美日韩国产在线播放| 亚洲国产视频二区| 日韩一级特黄| 国产模特精品视频久久久久| 日韩一区二区三区精品 | 夜久久久久久| 国产免费av国片精品草莓男男| 91成人在线| 亚洲激情亚洲| 日韩一区二区三区精品视频第3页| 日本h片久久| 亚洲免费激情| av综合网址| 在线看片欧美| 狼人综合视频| 欧美99在线视频观看| 天美av一区二区三区久久| 欧美美女福利视频| 亚洲精品97| 亚洲五码在线| 日本v片在线高清不卡在线观看| 丝袜诱惑制服诱惑色一区在线观看| 69精品国产久热在线观看| 麻豆国产欧美一区二区三区| 蜜桃视频第一区免费观看| 久久中文字幕av|