加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INAF U8145、代做c++,Java程序語言

時間:2024-04-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



SIPA INAF U8145
Spring 2024
Problem Set 3: Poverty and Inequality in Guatemala
Due Fri. April 5, 11:59pm, uploaded in a single pdf file on Courseworks
In this exercise, you will conduct an assessment of poverty and inequality in Guatemala. The data come from the
Encuesta de Condiciones de Vita (ENCOVI) 2000, collected by the Instituto Nacional de Estadistica (INE), the
national statistical institute of Guatemala, with assistance from the World Bank’s Living Standards Measurement
Study (LSMS). Information on this and other LSMS surveys are on the World Bank’s website at
http://www.worldbank.org/lsms. These data were used in the World Bank’s official poverty assessment for
Guatemala in 2003, available here.
Two poverty lines have been calculated for Guatemala using these ENCOVI 2000 data. The first is an extreme
poverty line, defined as the annual cost of purchasing the minimum daily caloric requirement of 2, 172 calories.
By this definition, the extreme poverty line is 1,912 Quetzals (Q), or approximately I$649 (PPP conversion), per
person per year. The second is a full poverty line, defined as the extreme poverty line plus an allowance for nonfood items, where the allowance is calculated from the average non-food budget share of households whose
calorie consumption is approximately the minimum daily requirement. (In other words, the full poverty line is the
average per-capita expenditures of households whose food per-capita food consumption is approximately at the
minimum.) By this definition, the full poverty line is 4,319 Q, or I$1,467.
Note on sampling design: the ENCOVI sample was not a random sample of the entire population. First, clusters
(or “strata”) were defined, and then households were sampled within each cluster. Given the sampling design, the
analysis should technically be carried out with different weights for different observations. Stata has a special set
of commands to do this sort of weighting (svymean, svytest, svytab etc.) But for the purpose of this exercise, we
will ignore the fact that the sample was stratified, and assign equal weight for all observations.1 As a result, your
answers will not be the same as in the World Bank’s poverty assessment, and will in some cases be unreliable.
1. Get the data. From the course website, download the dataset ps3.dta, which contains a subset of the variables
available in the ENCOVI 2000. Variable descriptions are contained in ps3vardesc.txt.
2. Start a new do file. My suggestion is that you begin again from the starter Stata program for Problem Set 1 (or
from your own code for Problem Set 1), keep the first set of commands (the “housekeeping” section) changing
the name of the log file, delete the rest, and save the do file under a new name.
3. Open the dataset in Stata (“use ps3.dta”), run the “describe” command, and check that you have 7,230
observations on the variables in ps3vardesc.txt.
4. Calculate the income rank for each household in the dataset (egen incrank = rank(incomepc)). Graph the
poverty profile. Include horizontal lines corresponding to the full poverty line and the extreme poverty line.
(Hint: you may want to create new variables equal to the full and extreme poverty lines.) When drawing the
poverty profile, only include households up to the 95th percentile in income per capita on the graph. (That is,
leave the top 5% of households off the graph.) Eliminating the highest-income household in this way will allow
you to use a sensible scale for the graph, and you will be able to see better what is happening at lower income
levels.
5. Using the full poverty line and the consumption per capita variable, calculate the poverty measures P0, P1, P2.
(Note: to sum a variable over all observations, use the command “egen newvar = total(oldvar);”.)
6. Using the extreme poverty line and the consumption per capita variable, again calculate P0, P1, and P2.
1 In all parts, you should treat each household as one observation. That is, do not try to adjust for the fact that
some households are larger than others. You will thus be calculating poverty statistics for households, using
per-capita consumption within the household as an indicator of the well-being of the household as a whole.
7. Using the full poverty line and the consumption per capita variable, calculate P2 separately for urban and rural
households.
8. Using the full poverty line and the consumption per capita variable, calculate P2 separately for indigenous and
non-indigenous households.
9. Using the full poverty line and the consumption per capita variable, calculate P2 separately for each region.
(Three bonus points for doing this in a “while” loop in Stata, like the one you used in Problem Set 1.)
10. Using one of your comparisons from parts 7-9, compute the contribution that each subgroup makes to
overall poverty. Note that if P2 is the poverty measure for the entire population (of households or of individuals),
and P2 j and sj are the poverty measure and population share of sub-group j of the population, then the
contribution of each sub-group to overall poverty can be written: sj*P2j/P2.
11. Summarize your results for parts 4-10 in a paragraph, noting which calculations you find particularly
interesting or important and why.
12. In many cases, detailed consumption or income data is not available, or is available only for a subset of
households, and targeting of anti-poverty programs must rely on poverty indices based on a few easy-toobserve correlates of poverty. Suppose that in addition to the ENCOVI survey, Guatemala has a population
census with data on all households, but suppose also that the census contains no information on per capita
consumption and only contains information on the following variables: urban, indig, spanish, n0_6, n7_24,
n25_59, n60_plus, hhhfemal, hhhage, ed_1_5, ed_6, ed_7_10, ed_11, ed_m11, and dummies for each region.
(In Stata, a convenient command to create dummy variables for each region is “xi i.region;”.) Calculate a
“consumption index” using the ENCOVI by (a) regressing log per-capita consumption on the variables
available in the population census, and (b) recovering the predicted values (command: predict), (c) converting
from log to level using the “exp( )” function in Stata. These predicted values are your consumption index. Note
that an analogous consumption index could be calculated for all households in the population census, using the
coefficient estimates from this regression using the ENCOVI data. Explain how.
13. Calculate P2 using your index (using the full poverty line) and compare to the value of P2 you calculated in
question 5.
14. Using the per-capita income variable, calculate the Gini coefficient for households (assuming that each
household enters with equal weight.) Some notes: (1) Your bins will be 1/N wide, where N is the number of
households. (2) The value of the Gini coefficient you calculate will not be equal to the actual Gini coefficient for
Guatemala, because of the weighting issue described above. (3) To generate a cumulative sum of a variable in Stata,
use the syntax “gen newvar = sum(oldvar);”. Try it out. (4) If you are interested (although it is not strictly
necessary in this case) you can create a difference between the value of a variable in one observation and the value
of the same variable in a previous observation in Stata, use the command “gen xdiff = x - x[_n-1];”. Be careful
about how the data are sorted when you do this.
What to turn in: In your write-up, you should report for each part any calculations you made, as well as written
answers to any questions. Remember that you are welcome to work in groups but you must do your write-up on
your own, and note whom you worked with. You should also attach a print-out of your Stata code.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做RISC-V、C/C++編程設計代寫
  • 下一篇:菲律賓買房的理由是什么 菲律賓買房的選擇
  • ·代寫ECON 8820、代做c++,Java程序語言
  • ·代寫MISM 6210、Python/java程序語言代做
  • ·CS101 編程代寫、代做 java程序語言
  • ·代寫DTS203TC、C++,Java程序語言代做
  • ·代做Biological Neural Computation、Python/Java程序語言代寫
  • ·program代做、Java程序語言代寫
  • ·CS 2210編程代寫、Java程序語言代做
  • ·代寫159.251編程、代做Java程序語言
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    97人人做人人爽香蕉精品| 欧美/亚洲一区| 卡一卡二国产精品| 国产精品普通话对白| 美国十次综合久久| 老鸭窝一区二区久久精品| 蜜臀av性久久久久蜜臀aⅴ四虎| jizz性欧美2| 你懂的成人av| 欧美国产日韩电影| 久久亚洲不卡| 国产91精品对白在线播放| 久久97视频| 青娱乐精品在线视频| 国产精品久久久久一区二区三区厕所| 色婷婷精品视频| 亚州精品视频| 麻豆精品新av中文字幕| 不卡av播放| 免费视频久久| 婷婷综合激情| 久久精品综合| 亚洲精品一二三**| 99综合99| 亚洲人成免费| 国产极品嫩模在线观看91精品| 免费看欧美女人艹b| 亚洲成人最新网站| 欧美三级午夜理伦三级小说| 日韩美脚连裤袜丝袜在线| 麻豆91在线播放| 欧美一级网址| 亚洲私拍视频| 国产美女高潮在线观看| 欧美午夜不卡| 久久国产电影| 天堂网av成人| 精品国产91久久久久久浪潮蜜月| 日韩电影免费在线| 亚洲精品**不卡在线播he| 欧美日韩91| 久久一区欧美| 一本久久综合| 另类综合日韩欧美亚洲| 天堂√中文最新版在线| 国产黄大片在线观看| 人人超碰91尤物精品国产| 欧美日韩精品| 免费精品国产的网站免费观看| 欧美精品国产白浆久久久久| 国产调教精品| 成人av资源网址| 丁香婷婷成人| 成人在线免费观看网站| 极品国产人妖chinesets亚洲人妖 激情亚洲另类图片区小说区 | 亚洲全部视频| 日韩精品视频网| 国产精品红桃| 成人在线日韩| 欧美人与牛zoz0性行为| www一区二区三区| 国产不卡精品| 亚欧洲精品视频在线观看| 国产精品欧美三级在线观看| 亚欧日韩另类中文欧美| 偷拍视屏一区| 麻豆国产一区| 久久久久91| 五月天久久777| 午夜综合激情| 麻豆成全视频免费观看在线看| 不卡福利视频| 久久国产人妖系列| 亚洲一本二本| 日韩va亚洲va欧美va久久| 麻豆一区在线| 亚洲无线视频| 免费久久99精品国产自在现线| 国产精品久久久久久久免费观看| 亚洲少妇视频| 亚洲精品少妇| 日韩国产在线不卡视频| 精品淫伦v久久水蜜桃| 女厕嘘嘘一区二区在线播放| 亚洲大全视频| 黄色在线观看www| 国产日韩欧美一区二区三区在线观看| 中文字幕免费精品| 秋霞一区二区| 亚洲国产日韩欧美在线| 麻豆精品网站| 99热播精品免费| 一区二区三区午夜视频| 日韩一区二区三区精品 | 日本网站在线观看一区二区三区| 成人在线日韩| 久久精品卡一| 日本欧美国产| 日日摸夜夜添夜夜添精品视频| 欧美国产中文高清| 欧美综合自拍| 免费视频最近日韩| 欧美一区免费| 日韩电影免费在线看| 外国成人激情视频| 香蕉视频亚洲一级| 国产精品片aa在线观看| 久久久久免费av| 可以看av的网站久久看| 国产欧美在线观看免费| 日韩av高清在线观看| 欧美精品黄色| 成人四虎影院| 一区二区三区视频播放| 日韩亚洲在线| 一区二区黄色| 一区二区在线免费播放| 亚洲一区国产一区| 久久精品人人| 欧美日韩一卡| 久久久精品久久久久久96| sm久久捆绑调教精品一区| 亚洲欧洲中文字幕| 久久九九免费| 欧美aaa视频| 日韩极品在线观看| 夜夜精品视频| 日韩精品色哟哟| 久久久9色精品国产一区二区三区| 国产粉嫩在线观看| 电影一区二区三区久久免费观看| 1024成人| 99精品免费| 999精品色在线播放| 91精品国产66| 北条麻妃在线一区二区免费播放 | 日韩成人综合网| 国产精品nxnn| 手机在线观看av网站| 欧美人妖在线| 日韩中文字幕不卡| 成人在线啊v| 一区精品久久| 国内精品久久久久久久97牛牛| 香蕉精品久久| 欧美a级一区二区| 欧州一区二区| 另类人妖一区二区av| 国户精品久久久久久久久久久不卡| 日韩毛片网站| 欧美色图在线播放| 日韩高清在线不卡| 精品一区在线| 影音先锋日韩精品| 一本久久知道综合久久| 亚洲欧洲二区| 日韩中文字幕一区二区三区| 国产一区二区三区天码| 免费观看久久久4p| 久久的色偷偷| 美女视频在线免费| 久久精品亚洲成在人线av网址| 日本电影久久久| 久久中文亚洲字幕| 麻豆精品一区二区| 亚洲少妇自拍| 亚洲精品合集| 新版的欧美在线视频| 精品国产一区二区三区av片 | 99久久影视| 亚洲国产免费看| 视频一区视频二区在线观看| 日韩精品成人| а√天堂资源国产精品| 91精品国产91久久综合 | 9999精品| 精品国产免费人成网站| 成人精品亚洲| 永久亚洲成a人片777777| 成人一区而且| 欧美调教在线| 91久久青草| 中国色在线日|韩| 免费欧美一区| 亚洲成aⅴ人片久久青草影院| 日韩一区二区三区免费播放| 欧美顶级毛片在线播放| 国产精品亚洲欧美| 美女日韩在线中文字幕| 国产精品sss在线观看av| 久久精品日产第一区二区 | 国产色噜噜噜91在线精品| 老司机免费视频一区二区三区| 日韩制服丝袜av| 久久网站免费观看| 日韩精彩视频在线观看| 久久精品国产99| 蜜桃久久久久久久| 欧美一二区在线观看| 亚洲国产合集|