加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫EMATM0050 DSMP MSc in Data Science

時間:2024-04-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



 University of Bristol MSc in Data Science; DSMP (Data Science Mini Project; EMATM0050)
Predicting T-Cell Receptor Specificity
T cells (T lymphocytes) are among the most important immune system cells with a vital role in adaptive immunity. T cells recognise cells in the body infected by viruses, bacteria or cells that have undergone cancer transformation. After recognising the infected or cancerous cells, T cells eliminate them from the body thereby preventing the spread of infection or cancer.
T cells recognise their targets through their T Cell Receptors (TCRs) expressed on their cell membrane. A T Cell Receptor consists of an alpha and a beta subunit. The evolutionary arms race between pathogens and the immune system has resulted in a mechanism for generation of a huge number of unique TCRs: and this is essential for a proper immune response against infections and cancer. Although TCR genes are encoded in the genome, their diversity is massively enhanced in several ways: (i) each TCR is composed of a pair of proteins (either alpha + beta chains or gamma + delta chains); (ii) rather than being encoded as a single gene, the DNA encoding the variable region of each of these chains is formed by joining 3 or 4 different stretches of DNA (gene segments) in a process is called VDJ recombination. Each alpha subunit contains a single V and J segment and each beta subunit contains a single V, a D and a J segment. Diversity is provided by the fact that the genome encodes multiple V, D and J segment; (iii) The joining of these segments involves mechanisms which insert and delete nucleotides in a pseudorandom fashion, maximising diversity in the joining region (the CDR3), the region of the TCR chain which contacts the peptide antigen. (ref 1)
T Cell Receptors (TCRs) constitute one of the most promising classes of emerging therapeutics. Whilst TCRs are amongst the most complex facets of immune biology, engineering of an optimum TCR can transform immunotherapies and personalised medicines. The TCR repertoire at any time point reflects on the person’s health and contains a memory of all past experiences. However, CRs are highly variable and their specificities aren’t easily predictable with traditional empirical methods.
In this project you will analyse TCR repertoire from the VDJdb (link) and use machine learning to predict TCRs that will bind to specific epitopes.
 
 Tasks
1. Data Download and Preprocessing
1.1 Download the zip file from GitHub and focus on the VDJdb.txt file.
1.2 Preprocess the dataset. Figure out what each column represents and keep
columns that will help you complete the project.
Predicting TCR specificity from sequence alone is the holy grail of immunotherapy. TCRs that are specific to the same target, often have very similar sequences, thereby TCR sequence – target patterns emerge in the data.
A crude approach could be to represent amino acids of the TCR or key regions of it using one-hot representation.
2. What are the limitations of this approach in downstream analysis? Could you describe a way to overcome them (Hint: Consider the CDR3 length distribution. We are looking for a high level description of the limitation and an approach that would overcome it. No algorithm development is required.)
A common method to predict specificity from a sequence is described in Vujovic et.al. (1). It creates some kind of distance or similarity score matrix of TCR sequences and uses that representation to train models that can classify TCRs based on specificity (Fig 1.).
 
  3. Estimate a distance/similarity matrix representation of the data. Calculate these metrics for the alpha and the beta chains separately, then calculate these for the combined alpha and beta chains too. (Hint: TCRDist, GLIPH or GIANA can be used for this. Alternatively, you can define your own similarity metric.)
4. Plot the TCRs in 2 dimensions and colour them based on specificity. Compare the plots for the alpha, the beta and the combined alpha-beta chains. Comment on your findings. (Hint: scikit-learn has a plethora of dimensionality reduction tools. Some examples are PCA, tSNE and UMAP.)
5. Write code to cluster TCRs. How well do TCRs cluster based on specificity? Can you explain why they do/don’t?
6. Write an algorithm that can predict antigen specificity from sequence. You can use any supervised/unsupervised algorithm to predict specificity. Comment on the performance of the model and reason why it performs good or bad. (Hint: Any reasonable modelling approach is fine. However, keep in mind that simpler models sometimes provide more insights regarding the underlying problem.)

 Bibliography/References
1. Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J (2020) 18:2166–21**. doi:10.1016/j.csbj.2020.06.041
2. Mayer-Blackwell. TCR meta-clonotypes for biomarker discovery with tcrdist3: quantification of public, HLA- 2 restricted TCR biomarkers of SARS-CoV-2 infection. bioRxiv (2020) 1:75–94.
3. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol (2020) 38:1194–1202. doi:10.1038/s41587-020-0505-4
4. Zhang H, Zhan X, Li B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat Commun (2021) 12:1–11.doi:10.1038/s41467-02**25006-WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:學(xué)習(xí)英語必備的幾大教材!非常全面
  • 下一篇:代做CS 7642 Reinforcement Learning and Decision
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    欧美日韩网址| www.精品| 日韩在线视频一区二区三区| 日韩中文影院| 99热免费精品| 国产精品videossex| 日本免费新一区视频| 激情国产在线| 91久久综合| 国语一区二区三区| 97色婷婷成人综合在线观看| 久久69成人| 在线中文字幕播放| 欧美精品九九| 亚洲91久久| 欧美成年网站| 国产一区二区视频在线看| jizz久久久久久| 中文在线8资源库| 亚洲少妇自拍| 免费av一区二区三区四区| 日本精品在线播放| 综合干狼人综合首页| 国产精品久久久久久久久久妞妞 | 国精品一区二区| 欧美私人啪啪vps| 国产成人ay| 久久久久久毛片免费看| 久久精品999| 78精品国产综合久久香蕉| 9999国产精品| 国产精品99视频| 美女国产精品| 国产亚洲高清视频| 国产婷婷精品| 国产美女精品| 国产视频久久| 亚洲男人影院| 亚洲一区中文| 国产亚洲精品自拍| 亚洲一区欧美二区| 欧美综合二区| 爽好久久久欧美精品| 亚洲在线观看| 男人的j进女人的j一区| 免费日韩精品中文字幕视频在线| 中文日韩欧美| 免费精品视频| 欧美激情成人| av女在线播放| 自拍偷自拍亚洲精品被多人伦好爽| 中文在线免费视频| 国产一区二区三区朝在线观看 | av中文字幕在线观看第一页| 日韩中文字幕av电影| 久久电影一区| segui88久久综合9999| 欧美激情黄色片| 欧美日韩国产观看视频| 日韩精品免费观看视频| 福利一区在线| 欧美国产免费| 亚洲理论电影| 一区视频网站| 久久久xxx| 欧美理论视频| 免费成人在线观看视频| 亚洲黄色免费av| 国产精品蜜月aⅴ在线| 国产日韩亚洲欧美精品| 欧美日本不卡| 日韩电影在线一区二区三区| 99久久香蕉| 激情欧美一区| 免费看的黄色欧美网站| 亚洲女色av| 久久狠狠亚洲综合| 国产成年精品| 国产色噜噜噜91在线精品| 99久久夜色精品国产亚洲狼| 亚洲经典自拍| 国产美女高潮在线观看| 欧美在线国产| 久久综合色占| 99久久久久| 丝袜美腿亚洲综合| 国产福利91精品一区二区| av在线亚洲一区| av日韩精品| 黄色另类av| 韩国精品主播一区二区在线观看| 日韩高清在线一区| 久久伊人影院| 欧美日韩三区| 欧美一区二区三区婷婷| 91精品视频一区二区| 粉嫩久久久久久久极品| 国产视频一区三区| 国产一区二区高清在线| 国产亚洲电影| 国精品一区二区| 日韩伦理视频| 欧美一区在线观看视频| 精品国产乱码久久久久久1区2匹| 亚洲在线观看| 日本在线不卡一区| 亚洲一区二区免费在线观看| 一区在线播放| 国产在视频一区二区三区吞精| 综合国产视频| 一区免费在线| 欧美高清免费| 中文字幕一区二区三区日韩精品| 欧美精品激情| 欧美亚洲视频| 国产精品对白久久久久粗| 欧美中文日韩| 国色天香一区二区| 亚洲网站在线| 国产一区二区主播在线| 日韩av在线播放中文字幕| 日韩视频在线一区二区三区| 四虎精品一区二区免费| 国产精品tv| 蜜桃av在线播放| 日本一区二区三区播放| 视频一区二区三区中文字幕| 日本不卡的三区四区五区| 久久黄色网页| 国产91亚洲精品久久久| 亚洲国产视频二区| 亚洲黄色中文字幕| 日韩精品视频中文字幕| 免费在线视频一区| 国产成人视屏| 美女国产一区| 欧美日韩黄色| 美女精品在线| 亚洲激情播播| 老司机精品视频网站| 美女毛片一区二区三区四区最新中文字幕亚洲| 欧美日韩性在线观看| 久久精品人人| 激情久久久久| 亚洲人www| 亚洲精品成人| 你懂的亚洲视频| 久久aⅴ乱码一区二区三区| 中文字幕免费一区二区| 制服诱惑一区二区| 国产成人影院| 麻豆mv在线观看| 国产精品nxnn| 欧美黄色网络| 91精品电影| 国产aa精品| 极品av在线| 国产精品毛片久久久| 国产超碰精品| 欧美一级精品片在线看| 麻豆91在线播放| 亚洲深夜福利| 日韩精品免费视频一区二区三区| 久久男人天堂| 99久久久国产精品美女| 欧美国产三区| 在线观看涩涩| 久久久久久久久丰满| 欧美精品导航| 漫画在线观看av| 亚洲91精品| 高清久久精品| 蜜桃成人精品| 欧美日韩视频| 日韩欧美中文字幕一区二区三区 | 999亚洲国产精| 精品中文在线| 日本久久一区| 男人的天堂亚洲一区| 精品久久久久久久| 一区二区三区国产精华| 中文字幕人成乱码在线观看| 91精品国产91久久久久久密臀| 一区二区影视| 不卡av播放| 黄色av日韩| 国产三级精品三级在线观看国产| 麻豆一区二区三区| 日本黄色免费在线| 午夜久久免费观看| 亚洲一二三区视频| 久久在线精品| 蜜桃视频一区二区| 黑丝美女一区二区| 国产情侣一区在线| 中文字幕日韩欧美精品高清在线| av一区在线| 丝袜美腿高跟呻吟高潮一区| 国内精品伊人久久久| 日韩高清电影免费|