加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STSCI 4060代做、代寫Python設計程序
STSCI 4060代做、代寫Python設計程序

時間:2024-05-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STSCI **0/5045 Final Project 
(Due: 4:30 PM, May 16, 2024) 
Important: Read and follow this whole document carefully! 
How to submit: submit your project report to the Canvas course website with a single zip file, 
which combines all your files. 
General instructions: 
• Do your own work. Any cheating behavior (for example, submitting code similar to 
that of other student(s), copying code from an Internet source, etc.) may result in a 
serious consequence (e.g., getting zero points, failing the class, …). If you have a 
question about the project, you should directly email your instructor. 
• Start the project early. Programming is time consuming; you will need significant 
amount of time and patience to code some portions of the project. Do not expect to 
finish it on the due day. 
• Test your code (especially the .cgi files) separately from other systems. When you have 
multiple software systems connected, it is harder to debug. 
• Add sufficient documentation to your code so that people understand your algorithm 
and what your code does. This is a requirement of this project. 
• Do not edit the raw data file in any way. Your results will be compared to the standard 
solutions. 
• Make sure that you have included all the components in your submission (see the 
details at the end of this document on pages 3 and 4). Your grader will run your 
programs on his/her computer; if something is missing your programs will not run. 
 
In this project you will have an opportunity to integrate Python programming, Oracle database, 
database-driven dynamic web pages, and Python data analysis modules with Jupyter (IPython) 
notebook using the data that are processed with the above integration. You are given a raw 
data file, honeybee_gene_sequences.txt, which was downloaded from the NCBI web site. We 
dealt with the protein data in the class; however, genes are different kinds of biomolecules. 
Unlike proteins that are composed of 20 amino acids, genes are only formed with four building 
elements: adenine (A), cytosine (C), guanine (G) and thymine (T). They are called nucleotides, a 
sequence of which forms a gene, which then determines the sequence of a protein. Thus, the 
compositions of the nucleotides and their relative frequencies, especially the combined relative 
frequency of C and G (i.e., the sum of the percentages of C and G in a gene sequence), have 
important biological (or medical) meanings. For this project, you will do the following: 
 
 1. Design a web page (using KompoZer or another similar program) to allow a user to enter 
a file name (here honeybee_gene_sequences.txt) and the full path to the location where 
the file is stored so that the user can upload the data file by clicking the Submit button 
on the web page. 
2. Write a specific .cgi file with Python to accept the user input from the web page, process 
the data and store the processed data in an Oracle database table, which is also created 
 
within the .cgi file using the Python-Oracle integration approach. In this .cgi file, you 
need to at least include the following functions: 
 
 A. The main() function to receive the user input from the web page. 
B. The processInput() function to do the following: 
a) Read in the contents of the data file. 
b) In order to extract the right nucleotide (or gene) sequences for all 
possible cases (you can see that most times the nucleotide sequences 
start right after the substring, mRNA, but not always), you are required to 
insert the substring, _**gene_seq_starts_here**_, right before the 
nucleotide sequences of every bee gene (or entry) through Python 
programming when you read in (or process) the raw data line by line. In 
this way, you will use the _**gene_seq_starts_here**_ substring as the 
starting point to extract the nucleotide sequences later. Note: There are 
different ways to extract the genes from the raw data. For the 
requirement specified above, you should just treat it as a programming 
requirement of this project. 
c) Extract the gi number and nucleotide sequence of each gene (or entry). 
d) Make sure that your Python program correctly reads in the gene (or 
nucleotide) sequence of the last entry in the raw data file. 
e) Calculate the relative frequencies of each nucleotide in every gene. 
f) Calculate the combined relative frequency of the nucleotides G and C, 
freq_GC, which is obtained by adding the relative frequencies of G and C. 
g) Connect Python to the Oracle database system. 
h) Create an Oracle table called beeGenes to store gi numbers, nucleotide 
sequences, the relative frequencies of the four nucleotides and the 
combined relative frequencies of the nucleotides G and C, freq_GC. So, 
your beeGenes table has seven columns. 
i) When you write the data to the database table, you are required to use 
the Oracle bind variable approach and the batch writing method by 
setting the bindarraysize to a certain number (refer to the lecture slides if 
needed). 
j) In order not to truncate any gene sequence, you need to find an 
appropriate number for the sequence input size. Thus, you are required 
to write a separate Python program (which should also be submitted for 
grading) to determine the maximum number of nucleotides of all the 
genes in the data file. 
C. fileToStr() to return a string containing the contents of the named html file. 
D. makePage() to make the final formatted string (or webpage) for displaying on a 
web page. 
3. Design a template web page to acknowledge that the uploading process was successful 
and that the data were processed and stored in the database as planned. There is a 
button on which a user can click if the user wants to see some results, retrieved from 
the Oracle database table you just created. 
4. Code another .cgi file with Python to retrieve data from the database table (beeGenes). 
The functions you need are similar to those in the previous .cgi file, but in the 
processInput() function, you are required to use a Python dictionary and the format 
 
string mechanism when you extract data from beeGenes. In this function, you will run 
queries against the beeGenes table to find the gi numbers of those bee genes that have 
the highest relative frequencies of nucleotide A, C, G, or T so that you can display these 
on the final web page when the user clicks the “Click to See Some Result” button on the 
confirmation page of data submission. Note that you may have a situate when multiple 
genes meet the same condition. Your code should take care of this kind of situation 
automatically. When that happens, you must list all the gi numbers in the same cell of 
your webpage table, with one gi number per line. 
5. Design another template web page to display the results gathered from the database. 
Inserting a hyperlink of the nucleotides to another web page is optional. 
6. You use the local server to run all the web services in this project, using port number 
8081. 
7. Write a Python program to run a query against the Oracle table beeGenes to show that 
you earlier successfully extracted the gene sequence of the last entry of the raw data 
file. To do so, you run a query for the gene sequence by providing the related gi number, 
which is 1****7436. Include both your Python code and the query result in your report. 
8. Connect Python to the Oracle database and conduct a K-Means cluster analysis in a 
Jupyter notebook. You should only use three columns in the beeGenes table: freq_A 
(relative frequency of the nucleotide A), freq_T (relative frequency of the nucleotide T) 
and freq_GC for this analysis due to some biological reasons. 
 
In your Jupyter notebook, you should use three cells: the 1st
 cell is for importing all 
the necessary Python modules for this analysis; the 2nd cell is to connect Python to 
your Oracle database and create a numpy array containing the three columns of 
data that are read from the beeGenes table in your Oracle database; and the 3rd cell 
is for carrying out the K-Means analysis and plotting a 3D scatter plot using the three 
columns of data based on the clusters identified by the K-Means analysis. 
 
The K-Means settings are: n_cluster=7, init='random', n_init=10, max_iter=500, 
tol=1e-4, and random_state=0. Then, you create a scatter plots with a total figure 
size of 14X14. Use the same type of marker ('o') for all the clusters, set s to 20, set 
labels to "Cluster 1" to "Cluster 7" for the cluster values of 0 to 6 that are found by 
the K-Means algorism, respectively. Set the colors as follows: red for Cluster 1, blue 
for Cluster 2, aqua for Cluster 3, black for Cluster 4, purple for Cluster 5, magenta for 
Cluster 6, and green for Cluster 7. 
 
Mark the centroid of each cluster with a star: set s to 100, color to red and label to 
Centroids. Give the title "K-Means" to the plot. The legends should be displayed in 
the upper right corner of the plot. 
 
After your code works correctly, run all the cells in your Jupyter notebook at once. 
Submit the notebook file (.ipynb) and an HTML file of the same notebook (.html). 
 
Your report should at least contain the following items: all your code, outputs and screenshots, 
which must be combined into a single PDF file, arranged in the order they appear in the project. 
You must mark all your items clearly. Moreover, your Python and html program files must be 
 
submitted as separate files, which must be kept in the same folder (no subfolders) so that your 
grader can run your programs easily. The following is a detailed list of the files/items to submit. 
 
• All Python program files (with the .py extension), including the program to find the 
maximum number of nucleotides in a gene sequence and the program to query the 
database to confirm that you successfully extracted the gene sequence of the last 
entry of the raw data file. 
• All .cgi files, which are technically Python files but contain the .cgi extension. 
• All .html files, including the template and non-template .html files. 
• The design window of your input web page. 
• The design windows of your two template web pages. 
• A screenshot of your input web page with the input value entered. 
• A screenshot of your confirmation web page that displays that you have successfully 
submitted the data, etc. 
• A screenshot of your final web page that displays the results of database query 
similar to the following screenshot (but it is only an example here, and the actual 
results were erased). 
 
• A screenshot of the local CGI server log. 
• The result of Oracle table query for the gene sequence of the last entry, which 
should be a Python shell screenshot (you may need more than one screen to display 
the complete sequence). 
• Your Jupyter notebook file (.ipynb). 
• The Jupyter notebook HTML file (.html). 
• The localCGIServer.py file. 
• The raw data file, honeybee_gene_sequences.txt. 
 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機打開當前頁
  • 上一篇:IERG2080代做、代寫C/C++程序語言
  • 下一篇:菲律賓開車需要駕照嗎(開車注意事項)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91亚洲精品视频在线观看| av在线播放资源| 日韩精品导航| 婷婷久久免费视频| 亚洲专区一区| 国产精品白丝av嫩草影院| 欧美精品不卡| 精品123区| 视频一区二区中文字幕| 国产91精品对白在线播放| 怕怕欧美视频免费大全| 99精品国产在热久久| 日韩成人精品一区二区| 九九综合在线| 神马日本精品| 成人自拍在线| 亚洲高清极品| 欧美精品导航| 日韩和欧美一区二区三区| 日韩欧美中字| 蜜桃视频一区二区三区| 欧美日韩国产精品一区二区亚洲| av男人一区| 日韩av一二三| 亚洲电影一级片| 国产精品视频一区视频二区 | 一区二区国产在线| 韩国女主播一区二区| 国产精品精品国产一区二区| 亚洲免费成人| 亚洲国产一成人久久精品| 99久久久久| 青草国产精品| 91精品国产自产在线丝袜啪| 亚洲区小说区图片区qvod按摩| 国一区二区在线观看| 国产精品久久久免费 | 久久香蕉网站| 麻豆成人久久精品二区三区红| 久久99久久99精品免观看软件| 日韩在线卡一卡二| 亚洲深夜福利| 亚洲永久字幕| 老牛国产精品一区的观看方式| 亚洲欧美日韩一区在线观看| 天天操夜夜操国产精品| 精品一区毛片| 欧美日韩国产探花| 日韩亚洲国产精品| 亚洲一区中文| 三级欧美在线一区| 国产高潮在线| 超碰在线cao| 五月激情久久| 亚洲第一av| 久热成人在线视频| 亚洲精一区二区三区| 91麻豆精品| 国产欧美激情| 国产日本亚洲| 欧美视频亚洲视频| 91精品啪在线观看国产18| 欧美日韩国产传媒| 黄色免费成人| 国产精品久久久久9999赢消| 日本三级一区| 美女性感视频久久| 亚洲三级在线| 精品中文字幕一区二区三区四区| 视频一区中文字幕精品| 精品美女久久| 图片区亚洲欧美小说区| 国产一级一区二区| 在线天堂资源www在线污| 欧美午夜三级| 欧美激情1区| 4438全国亚洲精品观看视频| 精品国产一区探花在线观看| 欧美精品羞羞答答| 日韩影院免费视频| 国产精品第一| 你懂的成人av| 国产精品毛片视频| 欧美特黄一区| 九色porny视频在线观看| 国产极品嫩模在线观看91精品| 亚洲伊人伊成久久人综合网| av男人一区| 最新日韩在线| 色8久久影院午夜场| 欧美日韩一区二区国产| 日本一区二区乱| 不卡av一区二区| 老色鬼在线视频| 欧美日本二区| 精品国产乱码久久久久久1区2匹| 一区三区视频| 亚洲精品成a人ⅴ香蕉片| 国产一区二区电影在线观看| 久久精品国内一区二区三区水蜜桃| 亚洲欧美日本国产专区一区| 日韩精品电影| 亚洲国产最新| 性欧美欧美巨大69| 夜鲁夜鲁夜鲁视频在线播放| 综合激情在线| 国产99亚洲| 欧美7777| 久久av超碰| 欧美日韩四区| 久久精品国产色蜜蜜麻豆| 日韩精品免费一区二区夜夜嗨| 女人天堂亚洲aⅴ在线观看| 波多视频一区| 偷拍亚洲色图| 亚洲深夜av| 亚洲精品护士| 色综合www| 91精品影视| 日韩精品丝袜美腿| 国产午夜精品一区二区三区欧美 | 欧美美女一区| 久久国产婷婷国产香蕉| jizz国产精品| 午夜裸体女人视频网站在线观看| 国产精品一区二区美女视频免费看 | 国产精品亚洲综合久久| 国产精品巨作av| 青青青免费在线视频| 日韩精品社区| 蜜臀av性久久久久蜜臀aⅴ| 一区二区免费不卡在线| 久久国产精品亚洲人一区二区三区 | 福利精品一区| 好吊妞视频这里有精品| 成人欧美一区二区三区的电影| 亚洲最好看的视频| 久久亚洲图片| 欧美猛男男男激情videos| 亚洲一区二区三区四区五区午夜| 久久中文字幕一区二区三区| 成人婷婷网色偷偷亚洲男人的天堂| 日韩一区二区在线| www.国产精品一区| 午夜av成人| 私拍精品福利视频在线一区| 精精国产xxx在线视频app| 天堂精品在线视频| 日韩一区二区在线免费| 欧美黑人巨大videos精品| 日韩和的一区二在线| 久久裸体视频| 日韩高清在线观看| 精品1区2区3区4区| 久久av电影| 在线看片国产福利你懂的| 欧美色一级片| 少妇精品视频在线观看| 女人av一区| 国产亚洲高清一区| 成人在线国产| 国产成人精品福利| 久久国产乱子精品免费女| 婷婷综合五月| 亚洲97av| 韩国精品主播一区二区在线观看| 久久社区一区| 伊人亚洲精品| 麻豆视频在线观看免费网站黄| 给我免费播放日韩视频| 日日欢夜夜爽一区| 欧美一级专区| 韩国精品福利一区二区三区| 日韩一级特黄| 蜜桃av一区| 97视频一区| 国产精品第十页| 黄视频网站在线观看| 欧美日中文字幕| 国产欧美日韩视频在线| 国产一区一一区高清不卡| 亚洲欧美日韩高清在线| 日本亚洲天堂网| 国产精品亚洲欧美| 男女性色大片免费观看一区二区| 国产精品一线| 亚洲一区色图| 主播大秀视频在线观看一区二区| 91成人精品| 亚洲小说春色综合另类电影| 亚洲国产美女| 黄毛片在线观看| 欧美日韩国产在线一区| 我要色综合中文字幕| 久久精品国产一区二区三| 久久久久久色| 亚洲国产老妈| 国产精品99久久免费观看| 国产欧美一区二区精品久久久| 99只有精品|