加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    免费精品视频在线| 日韩av字幕| 中文字幕免费精品| 国产精品国产一区| 99久久婷婷| 一区二区三区毛片免费| 国产高潮在线| 欧美日韩国产传媒| 日本免费一区二区视频| 国产日韩欧美在线播放不卡| 国产精品成人一区二区不卡| 亚洲手机视频| 天堂av一区| 99久久这里有精品| 少妇精品视频在线观看| 色999日韩| 亚洲激情午夜| 999精品视频| 亚洲图色一区二区三区| av在线播放一区二区| 激情中国色综合| 91视频综合| 99国产一区| 亚洲高清av| 黄色美女久久久| 亚洲成人一品| 久久男人av| 欧美一级一区| 成人在线观看免费视频| 中文在线а√天堂| 丝袜美腿亚洲综合| 99视频精品| 成人羞羞在线观看网站| 成人av资源网址| 久久久久久久久久久久电影| 国产亚洲一区二区三区不卡| 欧美国产高潮xxxx1819| 麻豆精品蜜桃视频网站| 狂野欧美性猛交xxxx| 日韩在线短视频| 国产精品久久久久蜜臀| 老牛嫩草一区二区三区日本| 国产精品毛片一区二区三区| 黑丝一区二区| 狠狠色丁香久久综合频道| 天天久久综合| 婷婷久久一区| 雨宫琴音一区二区在线| 国产精品美女久久久| 一本色道久久综合| 日韩午夜免费| 欧美综合二区| 欧美高清视频手机在在线| 国产精品麻豆久久| 天堂√中文最新版在线| 成人日韩精品| 久久精品99国产精品日本| 99精品欧美| 国产精品mm| 国产成人免费av一区二区午夜| av成人在线网站| 国产一区网站| 91成人福利| 成人三级视频| 波多野结衣一区| 亚洲一区激情| 在线免费av资源| 欧美亚洲黄色| 亚洲精品裸体| 亚洲va久久久噜噜噜久久| 亚洲性视频在线| 日韩精品免费一区二区三区| 欧洲乱码伦视频免费| 男女精品视频| 百度首页设置登录| 麻豆91小视频| 亚洲三级网址| 亚洲成人tv| 国产精品普通话对白| 黑人巨大精品欧美一区二区桃花岛| 国产一区一一区高清不卡 | 美女视频一区免费观看| 成人av三级| 免费在线亚洲| 日本欧美高清| 久久精品官网| 久色成人在线| ww久久综合久中文字幕| 国产麻豆一区二区三区| 99久热这里只有精品视频免费观看| 久久性感美女视频| 爽爽淫人综合网网站| 成人国产精品入口免费视频| 亚洲一区二区三区久久久| 激情视频亚洲| 夜久久久久久| www.一区| 先锋影音国产精品| 久久国产精品成人免费观看的软件| 国产视频一区三区| 国产69精品久久久久按摩| 你懂的国产精品永久在线| 成人在线亚洲| 免费观看在线综合| 一级成人国产| 国产精品17p| 老司机免费视频久久| 日韩高清中文字幕一区| 欧美日韩网站| 快she精品国产999| 欧美aaaaaa午夜精品| 国产图片一区| av中文在线资源库| 国产精品mm| 久久精品卡一| 男人天堂视频在线观看| 日韩高清在线免费观看| 一区二区亚洲精品| 久久国内精品| 福利在线一区| 色中色综合网| 欧美特黄不卡| 狠狠色丁香久久综合频道| 欧美成人三级| 精品日产乱码久久久久久仙踪林| 国产精品99久久精品| 欧美国产专区| 天天天综合网| 青青青爽久久午夜综合久久午夜| 欧美一区二区三区久久| 暖暖成人免费视频| 日韩精品中文字幕一区二区| 乱码第一页成人| 综合久久99| 亚洲经典在线看| 亚洲乱码久久| 牛夜精品久久久久久久99黑人| 久久精品国产久精国产爱| 欧美亚洲国产日韩| 自拍偷自拍亚洲精品被多人伦好爽 | 亚洲欧洲美洲一区二区三区| 在线日韩视频| 日日噜噜夜夜狠狠视频欧美人| 香蕉久久99| 久久精品免费观看| 99精品在线免费在线观看| 日韩欧乱色一区二区三区在线| 日本久久成人网| 久久精品国产99| 欧美码中文字幕在线| 日本麻豆一区二区三区视频| 婷婷亚洲五月色综合| 在线观看视频免费一区二区三区| 欧美午夜a级限制福利片| 欧美日韩影院| 视频在线观看91| 日本最新不卡在线| 欧美少妇精品| 理论片一区二区在线| 亚洲国产高清一区二区三区| 欧美99在线视频观看| 欧美黄色免费| 国产精品精品国产一区二区| 亚洲国产aⅴ精品一区二区| 成人1区2区| 极品中文字幕一区| 99久久999| 黑人巨大精品| 久久精品动漫| 最新亚洲国产| av资源中文在线| 久久精品动漫| 国产精品成人**免费视频| 三区四区不卡| 欧美一区二区三区久久| 国产精品chinese| 蜜桃av一区二区在线观看| 韩国精品福利一区二区三区| 日韩精品成人一区二区三区 | 成人在线超碰| 日本sm残虐另类| 色综合蜜月久久综合网| 人人狠狠综合久久亚洲婷婷 | 香蕉成人app| 久久精品72免费观看| 午夜在线观看免费一区| 综合伊人久久| 在线精品一区| 中文字幕在线看片| 自拍欧美一区| 日韩深夜福利| 麻豆视频观看网址久久| 国产伦久视频在线观看| 欧美1区2区3区| 欧美a在线观看| 亚洲综合激情在线| 中国字幕a在线看韩国电影| 亚洲欧美一区在线| 亚洲视频一起| 影音先锋日韩精品|