加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
For instance, CW-0**2023141520000-Tom.zip
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




















 

掃一掃在手機打開當前頁
  • 上一篇:香港到越南簽證多久能下來(香港辦理越南簽證流程)
  • 下一篇:CSSE2010 代做、代寫 c/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩av在线播放网址| 精品国产乱码久久久| 精品视频一区二区三区四区五区| 精品日产免费二区日产免费二区| 欧美专区视频| 国产日韩视频| 日韩在线第七页| 国产精品毛片在线看| 精品久久97| 久久99久久人婷婷精品综合 | 女同一区二区三区| 国精一区二区| 日本视频中文字幕一区二区三区| 日韩伦理在线一区| 久久大逼视频| 欧美大片aaaa| 91精品亚洲| 欧美精品中文| 日本精品一区二区三区在线观看视频| 亚洲一区在线| 亚洲国产精品一区制服丝袜| 成人国产精品| 男人天堂视频在线观看| 水蜜桃久久夜色精品一区| 伊人影院久久| 2023国产精品久久久精品双| 日本久久成人网| 国偷自产av一区二区三区| 少妇一区二区视频| 综合五月婷婷| 中文无码久久精品| 麻豆国产欧美日韩综合精品二区| 国产综合色在线观看| 亚洲www免费| 手机在线观看av网站| 亚洲国产福利| 成人免费图片免费观看| 久久久久久久欧美精品| 三级欧美在线一区| 久久国产88| 日本一区二区在线看| 免费日韩视频| 免费成人av在线| 欧美1级片网站| 欧美激情偷拍自拍| 深夜av在线| 日韩中文影院| 国产欧美在线观看免费| 国产一区二区色噜噜| 美女视频一区二区| 裸体一区二区三区| 欧美激情亚洲| 国产欧美日韩影院| 国产美女亚洲精品7777| 国产成人tv| 久久精品青草| 91成人超碰| 丝袜亚洲另类欧美| 日本在线啊啊| 国产成人77亚洲精品www| 欧美在线免费| 亚洲免费资源| 日韩高清一区| 欧美日韩色图| 亚洲一区二区三区高清| 91欧美日韩| 四虎地址8848精品| 欧美人成在线| 日韩极品在线观看| 久久精品亚洲成在人线av网址| 天天躁日日躁成人字幕aⅴ| 一区二区亚洲| av资源网在线播放| 欧美在线不卡| 国模精品一区| 里番精品3d一二三区| 图片小说视频色综合| 丝袜a∨在线一区二区三区不卡| 中国色在线日|韩| 一区二区三区四区五区精品视频| 一区二区三区四区在线观看国产日韩 | 噜噜噜91成人网| 日韩欧美综合| 中文无码久久精品| 白嫩白嫩国产精品| 羞羞色午夜精品一区二区三区| 国产精品入口66mio| 精品丝袜在线| 国产精品一站二站| 精品国产精品| 三级一区在线视频先锋 | 91精品一区| 国产三级精品三级在线观看国产| 亚洲精品一区二区妖精| 深夜在线视频| 国产精品亚洲欧美一级在线 | 一本色道久久综合| 日韩亚洲一区在线| 国产精品久久免费视频| 久久久久99| 国产精品久久久久蜜臀| 亚洲国产美女| 精品久久91| 91综合在线| 欧美日韩 国产精品| 精品国产a一区二区三区v免费| 亚洲一区二区三区四区五区午夜| 亚洲国产一区二区久久| 精品一区视频| 国产农村妇女精品一二区| 美日韩一级片在线观看| 日本一区二区三区播放| 午夜亚洲激情| 国产精品大片| 欧美69视频| jizz久久久久久| 三级欧美日韩| 色偷偷综合网| 国产成人免费av一区二区午夜| 欧美中文一区二区| 成人福利一区二区| 成人黄色av网址| 97视频热人人精品免费| 国产美女视频一区二区| 亚洲激情久久| 亚洲国产清纯| 亚洲福利国产| 久久精品国产精品亚洲红杏| 国产精品流白浆在线观看| 日本免费一区二区六区| 希岛爱理av免费一区二区| 鲁大师影院一区二区三区| 综合天堂av久久久久久久| 91精品动漫在线观看| 国产精品sm| 狠狠干综合网| 欧美精品1区| 99riav国产精品| 一区二区三区毛片免费| 99国产精品久久久久久久成人热 | 日本伊人精品一区二区三区观看方式| 成人精品影院| 亚洲国产高清视频| 久久五月天小说| 麻豆一区二区在线| 一本色道久久| 欧美一级大片在线视频| 美女国产精品| 久久免费福利| 亚洲电影有码| 久久人人99| 国产精品草草| 日韩在线a电影| 久久综合偷偷噜噜噜色| 女海盗2成人h版中文字幕| 国产三级精品三级在线观看国产| 巨胸喷奶水www久久久| 欧美在线导航| 麻豆国产精品777777在线| 亚洲一区自拍| 日韩av电影一区| 成人黄色免费观看| 成人短片线上看| 欧美午夜在线播放| 少妇视频一区| 国模吧视频一区| 国产精品亚洲欧美一级在线 | 在线亚洲人成| 91精品久久久久久久久久不卡| 日本欧美加勒比视频| 麻豆成人在线| 美女午夜精品| 国产精品亚洲欧美一级在线| 国产污视频在线播放| 91精品国产调教在线观看| 欧美国产免费| 午夜不卡影院| 狠狠综合久久| 7m精品国产导航在线| 肉肉av福利一精品导航| 免费观看在线色综合| 精品国产一区二区三区av片 | 丝袜亚洲另类丝袜在线| 国产成人一二| 欧美激情视频一区二区三区在线播放 | 永久亚洲成a人片777777| 色综合久久一区二区三区| 精品嫩草影院| 久久不卡国产精品一区二区| 日韩欧美激情| 水蜜桃久久夜色精品一区| 99久久亚洲精品| 亚洲免费成人av在线| 亚洲高清在线| 国产精品粉嫩| 免播放器亚洲| 在线一级成人| 国产精品丝袜在线播放| 国产激情一区| 麻豆国产精品一区二区三区 |