加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP4337代做、代寫Python設計編程

時間:2024-06-20  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



The University of New South Wales
COMP4337/9337 Securing Fixed and Wireless Networks
Assignment specifications for T2 2024 (24T2)
Version 1.0
1. Change Log
v1.0: Released on 17th June 2024
o Draft specifications
2. Due dates:
Final report/code/demo video submission: 1700 Hrs Friday 2nd August 2024
3. Goal and learning objectives
For this assignment, your task is to implement a hybrid digital contact tracing protocol called “DIMY: Did
I Meet You”. You should implement various components of the protocol by following the specifications
listed in this document, and reading the reference document listed under the section references to
understand the scope and working of the DIMY protocol. You can use multiple processes/threads/virtual
machines running on one laptop/desktop (with Linux OS) to setup the implementation environment.
3.1 Learning Objectives
On completing this assignment, you will gain sufficient expertise in the following skills:
1. Understanding and implementing several security mechanism for privacy-preserving, secret
sharing, key exchange and confidentiality such as Diffie-Hellman key exchange, Shamir Secret
Sharing, Hashing and Bloom Filters. ?
2. Learning how UDP/TCP socket-based communications take place.
3. Integration of various technologies to achieve Confidentiality, Integrity and Privacy.
4. Experience in implementing a real protocol.
4. Assignment Specifications
Updates to the assignment, including any corrections and clarifications, will be posted on the
course website at WebCMS. Please make sure that you check the course website regularly for
updates.

This section gives detailed specifications of the assignment.
4.1 COVID-19 and Contact Tracing
The outbreak of the COVID-19 pandemic has changed many aspects of everyone’s way of life. One of
the characteristics of COVID-19 is its airborne transmission, which makes it highly contagious. Moreover,
a person infected with COVID-19 can be asymptomatic, thus spreading the virus without showing any
symptoms. Anyone who comes into a close contact (within 2m for at least 15 min) with an infected person
is at a high risk of contracting the coronavirus.
Digital contact tracing applications aim to establish the close contacts of an infected person so that they
may be tested/isolated to break the chain of infection. The digital contact tracing app is typically composed
of two main entities, the smartphones acting as clients and a back-end server. In this model, the
smartphones of two individuals with tracing apps installed would exchange some random identification
code (this identification code does not reveal any sensitive information about their actual identities) when
they are in close proximity. The back-end is typically maintained by health organisations (or the
government), and once a person is diagnosed with COVID-19, they can opt to share the local list of
contacts stored on their smartphone with the back-end server to identify at-risk users. Digital contact
tracing apps are not meant to replace the traditional manual contact tracing processes, rather, these have
been designed to supplement the contact tracing process.
4.2 DIMY Digital Contact Tracing Protocol.
Download the reference paper [1] and read through it to understand various components of the DIMY
protocol. Briefly, devices participating in DIMY periodically generate random ephemeral identifiers.
These identifiers are used in the Diffie-Hellman key exchange to establish a secret key representing the
encounter between two devices that come in contact with each other. After generating their ephemeral
identifiers, devices employ the “k-out-of-n” secret sharing scheme to produce n secret shares of the
ephemeral identifiers. Devices now broadcast these secret shares, at the rate of one share per minute,
through advertisement messages. A device can reconstruct the ephemeral identifiers advertised from
another device, if it has stayed in this device’s communication range for at least k minutes.
After the ephemeral identifier is re-constructed, DIMY adopts Bloom filters to store the relevant contact
information. Each device maintains a Daily Bloom Filter (DBF) and inserts all the constructed encounter
identifiers in the DBF created for that day. The encounter identifier is deleted as soon as it has been
inserted in the Bloom filter. Devices maintain DBF on a 21 days rotation basis, identified as the incubation
period for COVID-19. DBFs older than 21 days automatically get deleted.
For the back-end, DIMY utilises blockchain to satisfy the immutable and decentralised storage
requirement. Once a user is diagnosed with COVID-19, they can volunteer to upload their encounter
information to the blockchain. Health Authorities (HA) then generate an authorisation access token from
the blockchain that is passed on to the device owner. The user’s device combines 21 DBFs into one Contact
Bloom Filter (CBF) and uploads this filter to the blockchain. The blockchain stores the uploaded CBF as
a transaction inside a block (in-chain storage) and appends the block to the chain.

Daily, the app will query the blockchain to perform risk-analysis, checking whether the user has come in
close contact with any person diagnosed positive. A device combines all of the locally stored DBFs (the
maximum number is limited to 21) in a single Bloom filter called the Query Bloom Filter (QBF). The
QBF is part of the query that gets uploaded to the blockchain. The blockchain matches the QBF with CBF
stored as a transaction in the blockchain and returns “matched” or “not matched” as a response. If the
response from the blockchain is negative, the device deletes its QBF. Conversely, if the user is found to
be at-risk, the user is notified, and the QBF is stored separately for further verification by HA in the follow
up manual contact tracing process.
4.3 Implementation Details
In this assignment, you will implement the DIMY protocol with a few modified parameters.
Note that in this specification, the term ‘node’ refers to an instance of the DIMY protocol implementation
(client) running on your laptop/desktop. Your main front-end program should be named Dimy.py. Note
that you also need to implement the backend centralised server that should run on your laptop/desktop.
Your backend server code should be named DimyServer.py.

This assignment specification has been modified to use TCP/IP protocol stack-based message passing
instead of BLE communication. It also uses different parameters as compared with the original
specifications listed in reference paper [1]. This is to cut down the development, testing and demo time
for the assignment. The marking guidelines appear at the end of the assignment specifications and are
provided to indicate the distribution of the marks for each component of the assignment.

Assignment Specification
We will follow most of the original specifications from the reference paper [1] except the changes that are
listed in this section. There are three major differences: 1) We will employ UDP/TCP socket-based
message passing between the nodes instead of using BLE communication. 2) We use different parameters
values described in detail later in this section. 3) You are required to implement a simple centralised server
acting as the back-end server instead of the Blockchain proposed in the reference paper. For details, please
go through the subsection on the backend server.
In DIMY protocol, each node performs the following steps to broadcast and register a shared secret key
representing an encounter with other another node in close proximity. We have listed these in form of
tasks you will be assessed on.
Task 1: Generate a **-Byte Ephemeral ID (EphID) after every 15 sec. Note that the reference paper
proposed a 16-Byte EphID due to limitation on the size of a Bluetooth message broadcast.
Task 2: Prepare n chunks of the EphID by using k-out-of-n Shamir Secret Sharing mechanism. For this
implementation, we use the values of k and n to be 3 and 5 respectively.

Task 3: Broadcast these n shares @ 1 unique share per 3 seconds. For this implementation, you are not
required to use Bluetooth message advertisement, rather you can use simple UDP broadcasting to advertise
these shares. Also, you do not need to implement the simultaneous advertisement of EphIDs proposed in
the reference paper [1].
Task 3a: Implement a message drop mechanism that drops a message which is ready to be transmitted
with probability 0.5. This should be implemented at the sender. Hint: generate a random number between
0 and 1. If this number is less than 0.5, don’t transmit that message (chunk).
Task 4: A receiver can reconstruct the advertised EphID, after it has successfully received at least k shares
out of the n shares being advertised. This means that if the nodes have remained in contact for at least 9
seconds and received >= 3 shares of the same EphID, it can reconstruct the EphID. Verify the re-
constructed EphID by taking hash and comparing with the hash advertised in the chunks.
Task 5: The node proceeds with applying Diffie-Hellman key exchange mechanism to arrive at the secret
Encounter ID (EncID).
Task 6: A node, after successfully constructing the EncID, will encode EncID into a Bloom filter called
Daily Bloom Filter (DBF), and delete the EncID.
Task 7: A DBF will store all EncIDs representing encounters faced during a **-second period. A new
DBF is initiated after the **-second period and each node stores at most 6 DBFs. DBF that is older than
9 min from the current time is deleted from the node’s storage. Note that in original specifications DBF
stores a day worth of EncIDs, but for this demo we will use DBF to store EncIDs received in **-second
windows.
Task 8: Every 9 minutes, a node combines all the available DBFs into another Bloom Filter called Query
Bloom Filter (QBF).
Task 9: Each node sends this QBF to the backend server, to check whether it has come in close contact
with someone who has been diagnosed positive with COVID-19. The node will receive the result of
matching performed at the back-end server. The result is displayed to inform the user. You are required
to use TCP for this communication between the node and the back-end server.
Task 10: A user who is diagnosed positive with COVID-19, can choose to upload their close contacts to
the backend server. It combines all available DBF’s into a single Contact Bloom Filter (CBF) and uploads
the CBF to the backend server. Once a node uploads a CBF, it stops generating the QBFs. The node will
receive a confirmation that the upload has been successful.
Task 11: This task performs simple security analysis of your implementation of the DIMY protocol.

A) List all the security mechanism proposed in the DIMY protocol and explain what purpose each of the
mechanism serves.
B) There are two types of communications in the DIMY protocol: i) Nodes communicate with each other
using UDP broadcasts. ii) Nodes communicate with the backend server using the TCP protocol. Create an
attacker node by modifying your implementation of the DIMY frontend. This code is named Attacker.py.
Assume that this node can receive all of the UDP broadcasts from other legitimate nodes. Think of one
attack that can be launched by this attacker node. Implement this attack and show how this attack affects
the DIMY nodes.
C) Now focus on the communication of nodes with the backend server. Again, think of one attack that can
be launched by the attacker node assuming the communication is not encrypted and the attacker node can
listen to any node communicating with the backend server. Explain how this attack affects the working of
the DIMY protocol. Note that you do not need to implement this 2nd type of attack on communication with
the backend server.
D) Finally, suggest measures (if possible) that can be implemented to prevent the attacks you identified in
B and C above for both types of communications.
General:
o Your front-end implementation should work in the debugging mode displaying messages sent and
received, operations performed and state of Bloom filters in the terminal to illustrate that it is
working correctly.
o Use UDP message broadcasting to implement send and receive functionality.
o DBF, QBF and CBF are all of size 100KB and use 3 hashes for encoding.
o You are required to run the assignment with three nodes running the DIMY frontend (plus the
attacker node in Task 11) and one back-end server.
Back-end Server
Your client implementation interacts with a backend-server to send CBF/QBF and receive the results for
the risk analysis performed at the back-end. Note that, you are not required to use a blockchain-based
implementation, rather, you can use a simple centralised server to interact with the front-end.
 The backend server program is deployed in your laptop or desktop machine using TCP port No
55000.
 You can provide the information regarding IP address and port No of the backend server to your
front-end client program through command line arguments. For example, Dimy.py
192.168.1.100 55000, where server is running on IP 192.168.1.100 and port No 55000 or you

can opt to hard code this information at the front-end.
 The nodes establish a new TCP connection with the back-end server to transfer CBF/QBF to the
server and receive the results of the queries.
 The back-end server stores all the received CBFs and can perform matching for each QBF
received from devices. It informs the node that has uploaded the QBF about the result of
matching, matched or not matched. If there is no CBF available, the back-end returns not
matched.
5. Additional Notes
 Groups: You are expected to work in groups composed of maximum two students. Use the same
groups that you have formed for the labs.

 Use Python to implement this assignment.

 You are required to develop and test the implementation on your own laptop/desktop instead of using
the CSE login servers.

 You are free to design your own format for messages exchanged between the nodes and the back-end
server. Just make sure your front-end and back-end programs can handle these messages appropriately.

 You are encouraged to use the course discussion forum on Ed to ask questions and to discuss different
approaches to solve any issues faced during the implementation. However, you should not post any
code fragments on the forum.
6. Assignment Submission
You need to submit a report, your source code and a demo video. Only one member of the Group is
required to do the submission. Put the details of the group members in each document.
The report (AssignmentReport.pdf see details in Section 7) should include the group ID, members name
and zIDs, and an assignment diary that details weekly tasks performed by each group members. Add a
note about how to run your program detailing the steps required to compile/run your submitted code.
Moreover, describe your method used for implementing the specified tasks, and issues faced along with
their adopted solutions. For task 11, explain how the attacker node can launch your selected attacks on the
DIMY protocol.
You will demonstrate your assignment with a video. The video should be a screen recording showing
running of each step of the assignment. We recommend you run each process in a separate terminal, so

that you can capture the interaction between different terminals on the same screen. You must include
each of the following segments against Tasks 1 – 11. You can store the video on a file sharing site (keep
video private and unlisted) and share the link in the report.
You are also required to submit your source code (e.g., submit Dimy.py, DimyServer.py and Attacker.py)
used in the demonstration. The demonstration video carries 15 marks, while the report and code will be
marked out of 5, for a total of 20 marks.
For code submission, please ensure that you use the mandated file name. Your main program should be
named Dimy.py. You may of course have additional helper files.
Note that in the following table “show” means a screen recording of the terminal windows.
Task Segment Description Marks
Task 1 Segment 1 Show the generation of the EphID at the client nodes. 0.5
Task 2

Segment 2 Show that 5 shares of the EphIDs are generated at each node. 0.5
Task 3/3a Segment 3-A Show the sending of the shares @ 1 share per 3 seconds over UDP while
incorporating the drop mechanism.
0.5
Segment 3-B Show the receiving of shares broadcast by the other nodes. 0.5
Segment 3-C Show that you are keeping track of number of shares received for each
EphID. Discard if you receive less than k shares.
0.5
Task 4 Segment 4-A Show the nodes attempting re-construction of EphID when these have
received at least 3 shares.
0.5
Segment 4-B Show the nodes verifying the re-constructed EphID by taking the hash
of re-constructed EphID and comparing with the hash value received in
the advertisement.
0.5
Task 5 Segment 5-A Show the nodes computing the shared secret EncID by using Diffie-
Hellman key exchange mechanism.
0.5
Segment 5-B Show that a pair of nodes have arrived at the same EncID value. 0.5
Task 6 Segment 6 Show that the nodes are encoding EncID into the DBF and deleting the
EncID.
0.5
Task 7 Segment 7-A Show that the nodes are encoding multiple EncIDs into the same DBF
and show the state of the DBF after each addition.
0.5
Segment 7-B Show that a new DBF gets created for the nodes after every ** seconds.
A node can only store maximum of 6 DBFs.
0.5
Task 8 Segment 8 Show that after every 9 minutes, the nodes combine all the available
DBFs into a single QBF.
0.5
Task 9 Segment 9 Show that a node can combine the available DBF into a CBF and upload
the CBF to the back-end server.
0.5
Task 10 Segment 10-
A
Show that the nodes send the QBF to the back-end server. 0.5
Segment 10-
B
Show that the nodes are able to receive the result of risk analysis back
from the back-end server. Show the result for a successful as well as an
unsuccessful match.
0.5

Segment 10-
C
Show the terminal for the back-end server performing the QBF-CBF
matching operation for risk analysis.
1
Task 11 Segment 1**
A
Explain the purpose of each of the security mechanism employed in the
DIMY protocol.
2
Segment 1**
B
Show the attacker node launching your selected attack on the inter-
node communication in the implementation setup.
2
Segment 1**
C
Explain how the attacker node can possibly launch your selected attack
on the communication between nodes and the backend server.
1
Segment 1**
D
Discuss the countermeasures that can be taken to mitigate the effects
of the attacks described in Segments 1**A and 1**B.
1

Important notes
? Assignment to be submitted by give.?
? Late submission penalty will be applied as follows:
o 5% reduction in obtained marks per day after the deadline ??
o 6 or more days after deadline: NOT accepted ?
NOTE: The above penalty is applied to your obtained marks. For example, if you submit your final
assignment deliverables 1 day late and your score in the assignment is 15/20, then your final mark will be
15 – 0.75 (5% penalty) = 14.25.
7. Report
For the final deliverable, you have to submit a small report, AssignmentReport.pdf (no more than 4
pages) that must contain the following:
1. Assignment name, group ID and names/IDs for all group members.
2. A note on how to run your program detailing the steps required to compile /run your submitted code.
3. Executive summary that provides a brief introduction to the salient features in the assignment
implementation.
4. A brief discussion of how you have implemented the DIMY protocol. Provide a list of features that
you have successfully implemented. In case you have not been able to get certain features of DIMY
working, you should also mention that in your report.
5. Discuss any design trade-offs considered and made. List what you consider is special about your
implementation. Describe possible improvements and extensions to your program and indicate how
you could realise them.
6. Indicate any segments of code that you have borrowed from the Web or other books.
7. Assignment Diary: Each group is also required to attach a **page assignment diary to the report. This
diary should maintain a weekly log of activities conducted by each group and should explicitly indicate
the part played by each team member in these activities. You may use any format (Gantt chart, table,

etc.) for maintaining the diary. The diary is not marked. However, if the diary is not submitted, a
penalty of 2 marks will be applied. Please attach the diary at the end of the report. Do not submit it as
a separate file. Unless specified otherwise, contribution from all members will be considered equal.
Any difficulty in working with team members must be reported to the tutor-in-charge at the earliest.
8. Plagiarism
You are to write all of the code for this assignment implementation yourself. All source codes are subject
to strict checks for plagiarism, via highly sophisticated plagiarism detection software for code as well as
the submitted report. These checks may include comparison with available code from Internet sites and
assignments from previous semesters. In addition, each submission will be checked against all other
submissions of the current semester. Do not post this assignment on forums where you can pay
programmers to write code for you. We will be monitoring such forums. Please note that we take this
matter quite seriously. The LIC will decide on appropriate penalty for detected cases of plagiarism. The
most likely penalty would be to reduce the assignment mark to ZERO and reported to the school
plagiarism register.
Forum use.
We are aware that a lot of learning takes place in student conversations, and don’t wish to discourage
those. You are free to discuss (and are in fact strongly encouraged to do so) generic issues relevant to the
assignment on the course forum. However, refrain from posting specific code-fragments or scripts on the
forum. Students will be heavily penalized for doing so. It is important, for both those helping others and
those being helped, not to provide/accept any programming language code in writing, as this is apt to be
used exactly as is, and lead to plagiarism penalties for both the supplier and the copier of the codes. It is
OK to borrow bits and pieces of code (not complete modules/functions) from sample code out on the Web
and in books. You MUST however acknowledge the source of any borrowed code. This means providing
a reference to a book or a URL where the code appears (as comments). Also indicate in your report the
portions of your code that were borrowed. Explain any modifications you have made (if any) to the
borrowed code. 
References:
[1] DIMY: Enabling Privacy-preserving Digital Contact Tracing,
https://www.sciencedirect.com/science/article/pii/S108480452200025X
FAQs:
Implementation:

1. Can we use available cryptographic libraries and modules? Yes, you can use any library to help
you with cryptographic primitives and you don’t need to implement algorithms from scratch.
2. Do we need to use libraries for Bloom filter implementation? No, you can design Bloom Filter by
setting bits with bitwise operations in a byte array to 1 or 0 to represent an element.

Report and Video:

1. Do we need to include code or terminal window screenshots in the report? No, the video will be
sufficient. Submit your code separately.
2. Can we shorten timer (Task 8) for the video presentation? No, but you can fast forward the
recording.
3. Is there a time limit for the video? No, but show only terminal windows with the process and no
code.
4. Can we reduce amount of the information printed to the terminal? Yes, ensure your terminal
windows display the necessary information in a readable and neat manner. Some ideas to consider:
a. Segment 4-A: EpID reconstruction DONE. EphID: 033f69 " (print only the first 6 char of
the EphID)
b. Segment 7-B: A new DBF has been created from 3 encounters.
c. Segment 10-A: Sending the QBF to the back-end server...

Submission:
1. Are both team members required to submit the assignment? No, only one student from your team
can submit, but remember to include zIDs of both members in your report.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp












 

掃一掃在手機打開當前頁
  • 上一篇:代做DE114102D、代寫c/c++,Python程序語言
  • 下一篇:COMP9727代做、代寫Java/Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲精品中文字幕99999| 视频在线不卡免费观看| 国产欧美日本| 日本一区二区三区视频在线| 亚洲无线视频| 日韩精品社区| 日日夜夜精品视频免费| 国产在线看片免费视频在线观看| 久久社区一区| 日韩av二区在线播放| 捆绑调教一区二区三区| 亚洲综合电影| 西西人体一区二区| 一区三区在线欧| 日韩成人在线观看视频| 亚洲精品社区| 国产成人免费| 日韩理论电影院| 亚洲免费网址| 99久久99热这里只有精品 | 亚洲色图插插| 日韩片欧美片| 97久久夜色精品国产| 伊人久久成人| 欧美1区2区| 久久久www| 国产香蕉精品| 99亚洲乱人伦aⅴ精品| 国内精品久久久久久久影视简单| 日本欧美一区二区三区| 国产成+人+综合+亚洲欧美| 日韩欧美二区| 国产欧美一区二区三区精品酒店| 亚洲综合99| 日韩视频不卡| 国产午夜久久| 亚洲黄色影院| 亚洲免费成人| 国产精品普通话对白| 黄色亚洲免费| 一区在线视频| 精品1区2区3区4区| 欧美另类综合| 狠狠噜噜久久| 国产农村妇女精品一二区| 国产视频欧美| 亚洲欧美日韩国产一区| 午夜在线a亚洲v天堂网2018| 亚洲最黄网站| 中文日韩在线| 蜜桃av一区二区在线观看| 日韩综合一区| 日韩情爱电影在线观看| av在线播放一区| 精品久久99| 在线精品一区二区| 伊人亚洲精品| 亚洲调教一区| 国偷自产av一区二区三区| 精品国产一区二区三区久久久蜜臀 | 欧美在线免费| 麻豆精品视频在线观看| 欧美日韩a区| 亚洲品质自拍| 成人在线免费观看网站| 香蕉精品久久| 波多野结衣在线播放一区| 99国产精品久久久久久久成人热| 久久国产精品亚洲77777| 色97色成人| 亚瑟国产精品| 91成人在线网站| 日韩高清一区| 久久日文中文字幕乱码| 99精品99| 女人高潮被爽到呻吟在线观看| 日本美女久久| 欧美激情 亚洲a∨综合| 日韩精品一区二区三区中文在线| 欧美五码在线| 宅男噜噜噜66一区二区 | 午夜一区不卡| 九色porny视频在线观看| 成人在线网站| 白嫩亚洲一区二区三区| 日本亚洲视频| 1024成人| 老色鬼在线视频| 青青青爽久久午夜综合久久午夜| 韩国一区二区三区视频| 国产欧美啪啪| 亚洲综合国产| 国产在视频一区二区三区吞精| 伊人亚洲精品| 久久婷婷亚洲| 免费久久精品视频| 国产精品久久久久毛片大屁完整版 | 日韩av中字| 中文在线播放一区二区| 国产精品22p| 巨乳诱惑日韩免费av| 国产美女久久| 日韩视频一区二区三区四区| 蜜臀久久99精品久久一区二区 | 黄色成人在线视频| 国产不卡一二三区| 欧美一区2区| 天堂√中文最新版在线| 亚洲欧美在线综合| 久久人人88| 亚洲精品在线影院| 一区二区电影| 国产图片一区| 久九九久频精品短视频| 在线观看视频免费一区二区三区| 91成人福利| 蜜桃91丨九色丨蝌蚪91桃色| 亚洲美女色禁图| 久久久久99| 日韩国产激情| 亚洲三级网页| 亚洲女人av| 亚洲综合激情在线| 欧美/亚洲一区| 午夜av成人| 超碰cao国产精品一区二区| 蘑菇福利视频一区播放| 亚洲区一区二| 亚洲小说欧美另类婷婷| 韩国精品主播一区二区在线观看 | 91久久黄色| 日韩国产欧美视频| 欧美一区2区| 欧美xxxx性| 丝袜av一区| 久久精品国产福利| 成人羞羞在线观看网站| 欧美三级精品| 国产精品黄网站| 91大神在线观看线路一区| 成人另类视频| 色天使综合视频| 国产成人福利av| 成人啊v在线| 红杏aⅴ成人免费视频| 日韩另类视频| 亚洲成人国产| 老司机免费视频一区二区| 99成人超碰| 青青青爽久久午夜综合久久午夜| 欧美一二区在线观看| 日本在线不卡视频一二三区| 中国av一区| 亚洲最大av| 免费久久精品视频| 日韩一区二区三区精品| 日韩深夜视频| 久久精品免费一区二区三区| 久久精品72免费观看| sdde在线播放一区二区| 欧美国产三区| 日本在线电影一区二区三区| 日本精品在线播放 | 欧美久久精品一级c片| 国产日韩欧美一区在线| 亚洲免费高清| 日本少妇精品亚洲第一区| 亚洲www免费| 激情自拍一区| 国产一区二区视频在线看| 欧美hentaied在线观看| 国产精品nxnn| 日韩和欧美一区二区| 亚洲一区欧美二区| 日韩电影在线观看电影| 日韩黄色大片| 欧美最新另类人妖| 亚洲精品国模| 欧美xxxx做受欧美护士| 天堂综合网久久| 精品一区二区三区中文字幕 | 亚洲成人精品| 9999在线精品视频| 97se综合| 午夜日韩在线| 伊人精品久久| 日本女优在线视频一区二区| 蜜桃视频第一区免费观看| 另类在线视频| 欧美经典一区| 日韩欧美专区| 欧美gay男男猛男无套| 色老板在线视频一区二区| 一区二区三区毛片免费| 麻豆国产在线| 亚洲精品一二三区区别| 一区中文字幕| 国产精品中文| 欧美成人aaa| 亚洲一二三四|