加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CSCI 4210 — Operating Systems

時(shí)間:2024-08-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


CSCI 4210  Operating Systems

Simulation Project Part II (document version 1.0)

Processes and CPU Scheduling

Overview

•  This assignment is due in Submitty by 11:59PM EST on Thursday, August 15, 2024

•  This project is to be completed either individually or in a team of at most three students; as with Project Part I, form your team within the Submitty gradeable, but do not submit any code until we announce that auto-grading is available

•  NEW: If you worked on a team for PartI, feel free to change your team for Part II; all code is reusable from Part I even if you change teams

•  Beyond your team (or yourself if working alone), do not share your code; however, feel free to discuss the project content and your findings with one another on our Discussion Forum

•  To appease Submitty, you must use one of the following programming languages:  C, C++, or Python (be sure you choose only one language for your entire implementation)

• You will have ve penalty-free submissions on Submitty, after which points will slowly be deducted, e.g., -1 on submission #6, etc.

• You can use at most three late days on this assignment; in such cases, each team member must use a late day

• You will have at least three days before the due date to submit your code to Submitty; if the auto-grading is not available three days before the due date, the due date will be 11:59PM EDT three days after auto-grading becomes available

•  NEW: Given that your simulation results might not entirely match the expected output on Submitty, we will cap your auto-graded grade at 50  points even though there will be more than 50 auto-graded points per language available in Submitty

• All submitted code must successfully compile and run on Submitty, which currently uses Ubuntu v22.04.4 LTS

• If you use C or C++, your program must successfully compile via gcc org++ with no warning messages when the -Wall  (i.e., warn all) compiler option is used; we will also use -Werror, which will treat all warnings as critical errors; the -lm flag will also be included; the gcc/g++ compiler is currently version 11.4.0 (Ubuntu  11.4.0-1ubuntu1~22.04)

•  For source file naming conventions, be sure to use * .c for C and * .cpp for C++; in either case, you can also include * .h files

• For Python, you must use python3, which is currently Python 3.10.12; be sure to name your main Python file project .py; also be sure no warning messages or extraneous output occur during interpretation

•  Please “flatten” all directory structures to a single directory of source files

•  Note that you can use square brackets in your code

Project specifications

For Part II of our simulation project, given the set of processes pseudo-randomly generated in Part I, you will implement a series of simulations of a running operating system. The overall focus will again be on processes, assumed to be resident in memory, waiting to use the CPU. Memory and the I/O subsystem will not be covered in depth in either part of this project.

Conceptual design  (from Part I)

process is defined as a program in execution.  For this assignment, processes are in one of the following three states, corresponding to the picture shown further below.

•  RUNNING: actively using the CPU and executing instructions

•  READY: ready to use the CPU, i.e., ready to execute a CPU burst

• WAITING: blocked on I/O or some other event

RUNNING                      READY                                   WAITING  (on  I/O) STATE                     STATE                                     STATE

+-----+                                                             +---------------------+

|           |          +-------------------+          |                                          |

|  CPU   |   <==  |         |         |         |         |              |         I/O  Subsystem          |

|           |          +-------------------+          |                                          |

+-----+           <<<  queue  <<<<<<<<<           +---------------------+

Processes in the READY  state reside in a queue called the ready queue.  This queue is ordered based on a configurable CPU scheduling algorithm.  You will implement specific CPU scheduling algorithms in Part II of this project.

All implemented algorithms (in Part II) will be simulated for the same  set  of processes, which will therefore support a comparative analysis of results. In Part I, the focus is on generating useful sets of processes via pseudo-random number generators.

Back to the conceptual model, when a process is in the READY state and reaches the front of the queue, once the CPU is free to accept the next process, the given process enters the RUNNING state and starts executing its CPU burst.

After each CPU burst is completed, if the process does not terminate, the process enters the WAITING  state, waiting for an I/O operation to complete (e.g., waiting for data to be read in from a file).  When the I/O operation completes, depending on the scheduling algorithm, the process either (1) returns to the READY  state and is added to the ready queue or (2) preempts the currently running process and switches into the RUNNING state.

Note that preemptions occur only for certain algorithms.

Algorithms — (Part II)

The four algorithms that you must simulate are first-come-first-served (FCFS); shortest job first (SJF); shortest remaining time (SRT); and round robin (RR). When you run your program, all four algorithms are to be simulated in succession with the same initial set of processes.

Each algorithm is summarized below.

First-come-first-served  (FCFS)

The FCFS algorithm is a non-preemptive algorithm in which processes simply line up in the ready queue, waiting to use the CPU. This is your baseline algorithm.

Shortest job first  (SJF)

In SJF, processes are stored in the ready queue in order of priority based on their anticipated CPU burst times.  More specifically, the process with the shortest predicted CPU burst time will be selected as the next process executed by the CPU. SJF is non-preemptive.

Shortest remaining time  (SRT)

The SRT algorithm is a preemptive version of the SJF algorithm. In SRT, when a process arrives, if it has a predicted CPU burst time that is less than the remaining predicted time of the currently running process, a preemption occurs.  When such a preemption occurs, the currently running process is added to the ready queue based on priority, i.e., based on its remaining predicted CPU burst time.

Round robin  (RR)

The RR algorithm is essentially the FCFS algorithm with time slice t slice.  Each process is given t slice  amount of time to complete its CPU burst. If the time slice expires, the process is preempted and added to the end of the ready queue.

If a process completes its CPU burst before a time slice expiration, the next process on the ready queue is context-switched in to use the CPU.

For your simulation, if a preemption occurs and there are no other processes on the ready queue, do not perform a context switch. For example, given process G is using the CPU and the ready queue is empty, if process G is preempted by a time slice expiration, do not context-switch process G back to the empty queue; instead, keep process G running with the CPU and do not count this as a context switch. In other words, when the time slice expires, check the queue to determine if a context switch should occur.

 

Simulation configuration  (extended from Part I)

The key to designing a useful simulation is to provide a number of configurable parameters. This allows you to simulate and tune for a variety of scenarios, e.g., a large number of CPU-bound processes, difering average process interarrival times, multiple CPUs, etc.

Define the simulation parameters shown below as tunable constants within your code, all of which will be given as command-line arguments. In Part II of the project, additional parameters will be added.

•  *(argv+1):  Define n as the number of processes to simulate.  Process IDs are assigned a two-character code consisting of an uppercase letter from A to Z followed by a number from

0 to 9. Processes are assigned in order A0, A1, A2, . . ., A9, B0, B1, . . ., Z9.

•  *(argv+2): Definen cpu as the number of processes that are CPU-bound. For this project, we will classify processes as I/O-bound or CPU-bound.  The n cpu   CPU-bound processes, when generated, will have CPU burst times that are longer by a factor of 4 and will have I/O burst times that are shorter by a factor of 8.

•  *(argv+3):  We will use a pseudo-random number generator to determine the interarrival times  of CPU bursts.  This command-line argument, i.e. seed, serves as the seed for the pseudo-random number sequence. To ensure predictability and repeatability, use srand48() with this given seed before simulating each  scheduling algorithm and drand48() to obtain the next value in the range [0.0, 1.0). Since Python does not have these functions, implement an equivalent 48-bit linear congruential generator, as described in the man page for these functions in C.

•  *(argv+4): To determine interarrival times, we will use an exponential distribution, as illus- trated in the exp-random .c example. This command-line argument is parameter λ; remember

that λ/1 will be the average random value generated, e.g., if λ = 0.01, then the average should be appoximately 100.

In the exp-random .c example, use the formula shown in the code, i.e., λ/− ln r.

•  *(argv+5):  For the exponential distribution, this command-line argument represents the upper bound for valid pseudo-random numbers.  This threshold is used to avoid values far down the long tail of the exponential distribution.  As an example, if this is set to 3000, all generated values above 3000 should be skipped. For cases in which this value is used in the ceiling function (see the next page), be sure the ceiling is still valid according to this upper bound.

•  *(argv+6): Define tcs  as the time, in milliseconds, that it takes to perform a context switch. Specifically, the first half of the context switch time (i.e., 2/tcs) is the time required to remove the given process from the CPU; the second half of the context switch time is the time required to bring the next process in to use the CPU. Therefore, require tcs  to be a positive even integer.

 

•  *(argv+7): For the SJF and SRT algorithms, since we do not know the actual CPU burst times beforehand, we will rely on estimates determined via exponential averaging.  As such, this command-line argument is the constant Q, which must be a numeric floating-point value in the range [0; 1].

Note that the initial guess for each process is τ0  = λ/1 .

Also, when calculating τ values, use the “ceiling” function for all calculations.

•  *(argv+8): For the RR algorithm, define the time slice value,t slice, measured in milliseconds. Require t slice  to be a positive integer.

Pseudo-random numbers and predictability  (from Part I)

A key aspect of this assignment is to compare the results of each of the simulated algorithms with one another given the same initial conditions, i.e., the same initial set of processes.

To ensure each CPU scheduling algorithm runs with the same set of processes, carefully follow the algorithm below to create the set of processes.

For each of the n processes, in order A0 through Z9, perform the steps below, with CPU-bound processes generated first. Note that all generated values are integers.

Define your exponential distribution pseudo-random number generation function as next_exp() (or another similar name).

1. Identify the initial process arrival time as the “floor” of the next random number in the sequence given by next_exp(); note that you could therefore have a zero arrival time

2. Identify the number of CPU bursts for the given process as the “ceiling” of the next random number generated from the uniform distribution obtained via drand48() multiplied by **; this should obtain a random integer in the inclusive range [1; **]

3. For each  of these CPU bursts, identify the CPU burst time and the I/O burst time as the “ceiling” of the next two random numbers in the sequence given by next_exp(); multiply the I/O burst time by 8 such that I/O burst time is close to an order of magnitude longer than CPU burst time; as noted above, for CPU-bound processes, multiply the CPU burst time by 4 and divide the I/O burst time by 8 (i.e., do not bother multiplying the original I/O burst time by 8 in this case); for the last CPU burst, do not generate an I/O burst time (since each process ends with a final CPU burst)

Simulation specifics  (Part II)

Your simulator keeps track of elapsed time t (measured in milliseconds), which is initially zero for each scheduling algorithm.  As your simulation proceeds, t  advances to each “interesting” event that occurs, displaying a specific line of output that describes each event.

The “interesting” events are:

•  Start of simulation for a specific algorithm

•  Process arrival (i.e., initially and at each I/O completion)

•  Process starts using the CPU

•  Process finishes using the CPU (i.e., completes a CPU burst)

•  Process has its τ value recalculated (i.e., after a CPU burst completion)

•  Process preemption (SRT and RR only)

•  Process starts an I/O burst

•  Process finishes an I/O burst

•  Process terminates by finishing its last CPU burst

• End of simulation for a specific algorithm

Note that the “process arrival” event occurs each time a process arrives, which includes both the initial arrival time and when a process completes an I/O burst. In other words, processes “arrive” within the subsystem that consists only of the CPU and the ready queue.

The “process preemption” event occurs each time a process is preempted.  When a preemption occurs, a context switch occurs, except when the ready queue is empty for the RR algorithm.

After you simulate each scheduling algorithm, you must reset your simulation back to the initial set of processes and set your elapsed time back to zero.

Note that there may be times during your simulation in which the simulated CPU is idle because no processes have arrived yet or all processes are busy performing I/O. Also, your simulation ends when all processes terminate.

If diferent types of events occur at the same time, simulate these events in the following order:

(a) CPU burst completion; (b) process starts using the CPU; (c) I/O burst completions; and

(d) new process arrivals.

Further, any “ties” that occur within  one of these categories are to be broken using process ID order.  As an example, if processes G1  and S9 happen to both complete I/O bursts at the same time, process G1 wins this “tie” (because G1 is lexicographically before S9) and is therefore added to the ready queue before process S9.

Be sure you do not implement any additional logic for the I/O subsystem.  In other words, there are no specific I/O queues to implement.

Measurements  (from Part I)

There are a number of measurements you will want to track in your simulation. For each algorithm, you will count the number of preemptions and the number of context switches that occur. Further, you will measure CPU utilization by tracking CPU usage and CPU idle time.

Specifically, for each  CPU  burst, you will track CPU burst time (given), turnaround time, and wait time.

CPU burst time

CPU burst times are randomly generated for each process that you simulate via the above algorithm. CPU burst time is defined as the amount of time a process is actually using the CPU. Therefore, this measure does not include context switch times.

Turnaround time

Turnaround times are to be measured for each process that you simulate.  Turnaround time is defined as the end-to-end time a process spends in executing a single  CPU  burst.

More specifically, this is measured from process arrival time through to when the CPU burst is completed and the process is switched out of the CPU. Therefore, this measure includes the second half of the initial context switch in and the first half of the final context switch out, as well as any other context switches that occur while the CPU burst is being completed (i.e., due to preemptions).

Wait time

Wait times are to be measured for each CPU burst. Wait time is defined as the amount of time a process spends waiting to use the CPU, which equates to the amount of time the given process is actually in the ready queue. Therefore, this measure does not include context switch times that the given process experiences, i.e., only measure the time the given process is actually in the ready queue.

CPU utilization

Calculate CPU utilization by tracking how much time the CPU is actively running CPU bursts versus total elapsed simulation time.

 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP501 ICT Fundamentals
  • 下一篇:BISM1201代做、代寫Python/Java程序語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    久久精品国产99久久6 | xxxxx性欧美特大| 精品成av人一区二区三区| 日本vs亚洲vs韩国一区三区| 美国欧美日韩国产在线播放| 久久影院一区| 国产日韩欧美中文在线| 麻豆精品一区二区三区| segui88久久综合9999| 欧美综合在线视频观看| 亚洲视频一起| 成人在线精品| 久久精品国产精品亚洲综合| 日本女优一区| 午夜精品亚洲| 久久久成人网| 日韩精品丝袜美腿| 亚洲精品日本| 成人日韩在线观看| 免费视频一区二区| 一本一道久久综合狠狠老| 韩国女主播一区二区三区| 欧美日韩午夜电影网| 美女网站一区二区| 青青青免费在线视频| 在线午夜精品| 亚洲调教视频在线观看| 精品国精品国产自在久国产应用| 欧美日韩黄色| 影音先锋日韩在线| 国产日韩一区二区三区在线播放 | 一区三区视频| 99精品一区| 欧美高清视频看片在线观看| 日韩极品少妇| 亚洲区小说区图片区qvod按摩| 欧美日韩a区| 日本v片在线高清不卡在线观看| 国产激情欧美| 78精品国产综合久久香蕉| 91欧美在线| 国产精品久久亚洲不卡| 欧美日韩女优| 电影亚洲精品噜噜在线观看| 日韩欧美三级| 丝袜诱惑一区二区| 在线视频cao| 91综合在线| jizzjizz中国精品麻豆| 蜜桃av噜噜一区| 美国三级日本三级久久99| 香蕉久久国产| 国产精品videosex性欧美| 亚洲一区自拍| 欧美mv日韩| 色网在线免费观看| 精品视频在线一区二区在线| 亚洲风情在线资源| 精品亚洲美女网站| 国产69精品久久久久9999人| 久久亚洲资源中文字| 欧美一级一区| 国产成人视屏| 亚洲自拍电影| 国产66精品| 亚洲一级网站| 国产精品美女久久久浪潮软件| 亚洲视频大全| 欧美wwwww| 欧美中文字幕精在线不卡| 香蕉久久久久久| 麻豆国产一区二区| 国产乱码精品一区二区亚洲| 日韩精品一区二区三区中文字幕 | av一级久久| 亚洲va久久久噜噜噜久久| 日韩美女精品| 丝袜av一区| 国产亚洲激情| 高潮在线视频| 日韩成人免费av| 一区二区三区在线电影| 精品国产亚洲一区二区三区大结局 | 免费永久网站黄欧美| 亚洲色图综合| 亚洲国产中文在线二区三区免| 99久久婷婷| 美女国产一区| 日本久久久久| 欧美一区在线观看视频| 欧美日韩天堂| 午夜视频一区| 日韩中字在线| 亚洲一区二区| 中文字幕中文字幕精品| 亚洲一区图片| 欧美在线日韩| 日韩成人午夜精品| 蜜桃国内精品久久久久软件9| 免费观看30秒视频久久| 国产精品资源| 日韩系列在线| 亚洲精品成人| 丝袜美腿一区| 国产一区不卡| 欧美综合另类| 成人欧美一区二区三区的电影| 日韩精品高清不卡| 精品国产麻豆| 亚洲欧美日本国产专区一区| 精品国产黄a∨片高清在线| 五月国产精品| a91a精品视频在线观看| 国产精品久久久久久久久免费高清 | 国产高清一区| 日韩片欧美片| 欧美极品在线观看| 欧美日韩日本国产亚洲在线 | 国产精品一在线观看| 免费久久久久久久久| 少妇精品视频一区二区免费看| 亚洲传媒在线| 国产免费成人| 日韩综合小视频| 国产乱人伦丫前精品视频| 欧美a级片视频| 国产美女视频一区二区| 欧洲杯什么时候开赛| 成人黄色毛片| 成人精品毛片| 天堂中文在线播放| 精品伊人久久| 国产精品久久观看| 国产精品免费大片| 亚洲一区二区三区高清| 国产精品mm| 精品91久久久久| 亚洲精品美女91| 不卡中文一二三区| 国产精品久久久亚洲一区| 久久看片网站| 免费一级欧美在线观看视频| 欧美日韩一本| 国产91欧美| 91精品国产乱码久久久久久久| 日本在线精品| 精品视频黄色| 免费日韩成人| 欧美1区2区| 亚洲精品在线二区| 欧美日韩精品| 国产成人1区| 蜜臀av一区二区| 欧美1区2区3| 香蕉成人av| 久久婷婷激情| 老司机免费视频一区二区| 在线电影一区二区| 国产一区二区三区亚洲综合| 蜜乳av一区二区三区| 美女精品久久| 欧美美女福利视频| 极品美女一区二区三区| 国产精品xvideos88| 另类激情亚洲| 日韩在线观看一区二区三区| 成人日韩精品| 精品一区亚洲| 亚洲免费资源| 激情黄产视频在线免费观看| 精品日韩在线| 久久亚洲道色| 国产亚洲成av人片在线观看| 成人av资源网址| 日日夜夜免费精品视频| 精品少妇av| 伊人亚洲精品| 国产色播av在线| 欧美色图国产精品| 精品一区二区三区中文字幕视频 | 99精品电影| 亚洲伦理精品| 日韩av在线播放网址| 精品国产91| 97久久精品一区二区三区的观看方式| 色999日韩| 国产主播一区| 久久成人av| 久久国产视频网| 丝袜美腿亚洲综合| 精品亚洲自拍| 国产剧情一区| 欧美一区二区三区婷婷| 中文日韩在线| 欧美三级午夜理伦三级小说| 综合久久av| 激情中国色综合| 日韩www.| 亚洲免费大片| 老司机精品在线|