加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩中文欧美在线| 日韩在线理论| 欧美国产偷国产精品三区| 精品美女一区| jizz久久精品永久免费| 老**午夜毛片一区二区三区| 日韩精品五月天| 欧美三级午夜理伦三级小说| 日韩一区电影| 野花国产精品入口| 999精品视频在线观看| 欧美日韩黑人| 麻豆精品一区二区综合av| 久久精品播放| 99精品热6080yy久久| 国产精品tv| 欧洲成人一区| 欧美日韩直播| 日韩美女毛片| 岛国av在线播放| 在线 亚洲欧美在线综合一区| 亚洲理论在线| 免费在线观看不卡| 激情文学一区| 亚洲伊人精品酒店| 美腿丝袜亚洲一区| 特黄毛片在线观看| 免费看欧美女人艹b| 自拍日韩欧美| 国产免费av一区二区三区| 日韩中文字幕麻豆| 欧美日韩三级| 欧美码中文字幕在线| 九九热播视频在线精品6| 日韩精品亚洲专区| 精品免费av在线| 老牛影视精品| 久久亚洲成人| 加勒比中文字幕精品| 日韩在线观看中文字幕| 日韩成人综合网| 天堂中文在线播放| 欧美xxav| 久久激情电影| 久久久xxx| 久久久精品性| 99久久99久久精品国产片桃花 | 精品91久久久久| 伊人春色之综合网| 欧美一区三区| 午夜久久久久| 中文日韩欧美| 免费在线观看精品| 欧美www视频在线观看| 樱花草涩涩www在线播放| 四虎成人精品永久免费av九九| 日韩不卡一区| segui88久久综合9999| 亚洲女色av| yy6080久久伦理一区二区| 国内激情久久| 伊人久久亚洲热| 蜜桃视频免费观看一区| www.色在线| 国产一区二区| 国产精品观看| 在线高清欧美| 日本在线视频一区二区三区| 国产一区二区高清在线| 日日狠狠久久| 麻豆精品一区二区av白丝在线| 国产精品九九| 亚洲老女人视频免费| 麻豆中文一区二区| 国产不卡精品在线| 色天使综合视频| 久久激情综合网| 欧美激情日韩| 美腿丝袜亚洲三区| 久久香蕉精品香蕉| 天海翼亚洲一区二区三区| 亚洲视频一起| 午夜精品一区二区三区国产| 免费久久99精品国产自在现线| 精品日韩在线| 午夜久久tv| 中文在线资源| 亚洲精品婷婷| 亚洲视频国产精品| 天天做综合网| 97精品国产| 日韩国产欧美在线观看| 亚洲精品aaaaa| 久久五月天小说| 手机在线电影一区| 国产精品久久777777毛茸茸| 欧美专区一区| 久久久9色精品国产一区二区三区| 好看不卡的中文字幕| 日本免费一区二区六区| 午夜天堂精品久久久久| 精品精品国产三级a∨在线| av成人激情| 国产精品主播| av一级亚洲| 天堂va蜜桃一区二区三区漫画版| 国产精品久久亚洲不卡| 国产精品3区| 久久国产精品亚洲人一区二区三区 | 日韩一区二区三区高清在线观看| 图片区亚洲欧美小说区| 日韩欧美视频| 国产探花在线精品| 欧美久久精品一级c片| 欧美三级精品| 男人最爱成人网| 欧美日韩一区二区高清| 成人综合久久| av影院在线免费观看| 国产精品久一| 美女久久久久| 欧美天堂一区二区| 日本99精品| 国产精品国产一区| 国产视频一区二区在线播放| 亚洲特级毛片| 欧美在线精品一区| 欧美色资源站| 黄色精品视频| 久久激情av| 91精品xxx在线观看| 三级欧美日韩| 色天天综合网| 少妇精品久久久| 男女av一区三区二区色多| 亚洲国产一区二区三区a毛片| 亚洲天堂激情| 久久精品一区二区国产| 久久国产精品成人免费观看的软件| 日韩大片在线播放| 99久久香蕉| 精品国模一区二区三区| 欧美三区美女| 美女福利一区二区| 日韩在线观看中文字幕| 亚洲精品mv| 亚洲精品一二三**| 精品捆绑调教一区二区三区| 视频国产精品| 日韩欧美精品一区| 天堂日韩电影| 久久国产人妖系列| 亚洲女同一区| 国产亚洲电影| 中文字幕在线视频网站| 精品视频网站| 欧美成人免费全部网站| 亚洲高清久久| 高清一区二区中文字幕| 丝袜脚交一区二区| 日韩成人在线观看视频| 欧美gv在线| 久久九九99| 欧美激情1区2区3区| 丝袜美腿亚洲综合| 免费观看性欧美大片无片| 日韩成人综合| 久久伦理在线| 国产精品一区免费在线| 欧美黄色大片在线观看| 国内露脸中年夫妇交换精品| 美女网站一区二区| 亚洲在线日韩| 国内毛片久久| 影音先锋亚洲精品| 成人精品电影| 精品国产一区二区三区av片 | 免费观看成人鲁鲁鲁鲁鲁视频| 久久伦理中文字幕| 国产精品美女午夜爽爽| 亚洲精华国产欧美| 激情视频亚洲| 欧美日韩亚洲一区在线观看| 免费观看久久久4p| 欧美日韩伦理| 国产日产一区| 福利一区二区三区视频在线观看| 亚洲精品在线观看91| 亚洲毛片免费看| 国产日韩1区| 日韩av在线播放网址| 亚洲高清二区| 玖玖精品一区| 综合久草视频| 91福利精品在线观看| 亚洲欧美日韩一区在线观看| 成人午夜网址| 国产不卡一区| 国产资源一区| а√天堂8资源在线|