加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫3007_7059 Artificial Intelligence 3007_7059
代寫3007_7059 Artificial Intelligence 3007_7059

時(shí)間:2024-09-08  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Assignment 2: Artificial Intelligence (3007_7059 Combined)

Assignment 2

The dataset is available here

(https://myuni.adelaide.edu.au/courses/95211/files/1453***/download)

Part 1 Wine Quality Prediction with 1NN (K-d Tree)

Wine experts evaluate the quality of wine based on sensory data. We could also collect the features of wine from objective tests, thus the objective features could be used to predict the expert’s judgment, which is the quality rating of the wine. This could be formed as a supervised learning problem with the objective features as the data features and wine quality rating as the data labels.

In this assignment, we provide objective features obtained from physicochemical statistics for each white wine sample and its corresponding rating provided by wine experts. You are expected to implement the k-d tree (KDT) and use the training set to train your k-d tree, then provide wine quality prediction on the test set by searching the tree

Wine quality rating is measured in the range of 0-9. In our dataset, we only keep the samples for quality ratings 5, 6 and 7. The 11 objective features are listed as follows [1]:

f_acid : fixed acidity

v_acid : volatile acidity

c_acid : citric acid

res_sugar : residual sugar

chlorides : chlorides

fs_dioxide : free sulfur dioxide

ts_dioxide : total sulfur dioxide

density : density

pH : pH

sulphates : sulphates

alcohol : alcohol

Explanation of the Data.

train: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

 

sulphates

alcohol

quality

8.10

0.270

0.41

1.45

0.033

11.0

63.0

0.9**80

2.99

0.56

12.0

5

8.60

0.230

0.40

4.20

0.035

17.0

109.0

0.99**0

3.14

0.53

9.7

5

7.**

0.180

0.74

1.20

0.040

16.0

75.0

0.99200

3.18

0.63

10.8

5

8.30

0.420

0.62

19.25

0.040

41.0

172.0

1.00020

2.98

0.67

9.7

5

6.50

0.310

0.14

7.50

0.044

34.0

133.0

0.99550

3.22

0.50

9.5

5

test: The first 11 columns represent the 11 features and the 12th column is the wine quality. A sample is depicted as follows:

f_acid

v_acid

c_acid

res_sugar

chlorides

fs_dioxide

ts_dioxide

density

pH

sulphates

alcohol

7.0

0.360

0.14

11.60

0.043

35.0

228.0

0.99770

3.13

0.51

8.**0000

6.3

0.270

0.18

7.70

0.048

45.0

186.0

0.99620

3.23

0.**

9.000000

7.2

0.2**

0.20

7.70

0.046

51.0

174.0

0.99582

3.16

0.52

9.500000

7.1

0.140

0.35

1.40

0.039

24.0

128.0

0.99212

2.97

0.68

10.400000

7.6

0.480

0.28

10.40

0.049

57.0

205.0

0.99748

3.24

0.45

9.300000

1.1 1NN (K-d Tree)

From the given training data, our goal is to learn a function that can predict the wine quality rating of a wine sample, based on the objective features. In this assignment, the predictor function will be constructed as a k-d tree. Since the attributes (objective features) are continuously valued, you shall apply the k-d tree algorithm for continuous data, as outlined in Algorithms 1. It is the same as taught in the lecture. Once the tree is constructed, you will search the tree to find the **nearest neighbour of a query point and label the query point. Please refer to the search logic taught in the lecture to write your code for the 1NN search.

 

Algorithm 1 BuildKdTree(P, D) Require: A set of points P of M dimensions and current depth D. 1: if P is empty then 2: return null 3: else if P only has one data point then 4: Create new node node 5: node.d ← d 6: node.val ← val 7: node.point ← current point 8: return node 9: else 10: d ← D mod M 11: val ← Median value along dimension among points in P. 12: Create new node node. 13: node.d ← d 14: node.val ← val 15: node.point ← point at the median along dimension d 16: node.left ← BuildKdTree(points in P for which value at dimension d is less than or equal to val, D+1) 17: node.right ← BuildKdTree(points in P for which value at dimension d is greater than val, D+ 1) 18: return node 19: end if

Note: Sorting is not necessary in some cases depending on your implementation. Please figure out whether your code needs to sort the number first. Also, if you compute the median by yourself, when there’s an even number of points, say [1,2,3,4], the median is 2.5.

 

1.2 Deliverable

Write your k-d tree program in Python 3.6.9 in a file called nn_kdtree.py. Your program must be able to run as follows:

$ python nn_kdtree.py [train] [test] [dimension]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[dimension] is used to decide which dimension to start the comparison. (Algorithm 1)

Given the inputs, your program must construct a k-d tree (following the prescribed algorithms) using the training data, then predict the quality rating of each of the wine samples in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

1.3 Python Libraries

You are allowed to use the Python standard library to write your k-d tree learning program (see https://docs.python.org/3/library/(https://docs.python.org/3/library/) for the components that make up the Python v3.6.9 standard library). In addition to the standard library, you are allowed to use NumPy and Pandas. Note that the marking program will not be able to run your program to completion if other third-party libraries are used. You are NOT allowed to use implemented tree structures from any Python package, otherwise the mark will be set to 0.

1.4 Submission

You must submit your program files on Gradescope. Please use the course code NPD6JD to enroll in the course. Instructions on accessing Gradescope and submitting assignments are provided at https://help.gradescope.com/article/5d3ifaeqi4-student-canvas (https://help.gradescope.com/article/5d3ifaeqi4-student-canvas) .

For undergraduates, please submit your k-d tree program (nn_kdtree.py) to Assignment 2 - UG.

1.5 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

 

1.6 Debugging Suggestions

Step-by-step debugging by checking intermediate values/results will help you to identify the problems of your code. This function is enabled by most of the Python IDE. If not in your case, you could also print the intermediate values out. You could use sample data or create data in the same format for debugging

1.7 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 15% (undergrads) or 12% (postgrads) of the overall course mark. For undergraduates, bonus marks of 3% will be awarded if Section 2 is completed correctly.

There will be no further manual inspection/grading of your program to award marks based on coding style, commenting, or “amount” of code written.

1.8 Using other source code

You may not use other source code for this assignment. All submitted code must be your own work written from scratch. Only by writing the solution yourself will you fully understand the concept.

1.9 Due date and late submission policy

This assignment is due by 11:59 pm Friday 3 May 2024. If your submission is late, the maximum mark you can obtain will be reduced by 25% per day (or part thereof) past the due date or any extension you are granted.

Part 2 Wine Quality Prediction with Random Forest

For postgraduate students, completing this section will give you the remaining 3% of the assignment marks. In this task, you will extend your knowledge learned from k-d tree to k-d forest. The process for a simplified k-d forest given N input-output pairs is:

1. Randomly select a set of N' distinct samples (i.e., no duplicates) where N' = N' * 80% (round to integer). This dataset is used for constructing a k-d tree (i.e., the root node of the k-d tree)

 

2. Build a k-d tree on the dataset from (1) and apply Algorithm 1.

3. Repeat (1) and (2) until reaching the maximum number of trees.

This process is also shown in Algorithm 2. In k-d forest learning, a sample set is used to construct a k-d tree. That is to say, different trees in the forest could have different root data. For prediction, the k-d forest will choose the most voted label as its prediction. For the wine quality prediction task, you shall apply Algorithm 2 for k-d forest learning and apply Algorithm 3 to predict the wine quality for a new wine sample. To generate samples, please use the following (incomplete) code to generate the same samples as our testing scripts:

import random ... N= ... N’=... index_list = [i for i in range(0, N)] # create a list of indexes for all data sample_indexes = [] for j in range(0,n_tree): random.seed(rand_seed+j) # random_seed is one of the input parameters subsample_idx = random.sample(index_list, k=N’) # create unique N’ indices sample_indexes = sample_indexes + subsample_id Algorithm 2 KdForest(data, d_list, rand_seed) Require:data in the form. of N input-output pairs ,d_list a list of depth 1: forest ← [] 2: n_trees ← len(d_list) 3: sample_indexes ← N'*n_trees integers with value in [0,N) generated by using above method 4: count ← 0 5: for count < n_trees do 6: sampled_data ← N' data pairs selected by N' indexes from sample_indexes sequentially 7: n = BuildKdTree(sampled_data, d_list[count]) ⇒ Algorithm 1 8: forest.append(n)

 

9: end for 10: return forest Algorithm 3 Predict_KdForest(forest, data) Require: forest is a list of tree roots, data in the form. of attribute values x. 1: labels ← [] 2: for Each tree n in the forest do 3: label ← 1NN search on tree n 4: labels.append(n) 5: end for 6: return the most voted label in labels

2.1 Deliverables

Write your random forest program in Python 3.6.9 in a file called nn_kdforest.py. Your program must be able to run as follows

$ python nn_kdforest.py [train] [test] [random_seed] [d_list]

The inputs/options to the program are as follows:

[train] specifies the path to a set of the training data file

[test] specifies the path to a set of testing data file

[random_seed] is the seed value generate random values.

[d_list] is a list of depth values (in Algorithm 2 n_trees==len(d_list))

Given the inputs, your program must learn a random forest (following the prescribed algorithms) using the training data, then predict the quality rating of each wine sample in the testing data. Your program must then print to standard output (i.e., the command prompt) the list of predicted wine quality ratings, vertically based on the order in which the testing cases appear in [test].

Submit your program in the same way as the submission for Sec. 1. For postgraduates, please submit your learning programs (nn_kdtree.py and nn_kdforest.py) to Assignment 2 - PG. The due date, late submission policy, and code reuse policy are also the same as in Sec 1.

 

2.2 Expected Run Time

Your program must be able to terminate within 600 seconds on the sample data given.

2.3 Debugging Suggestions

In addition to Sec. 1.6, another value worth checking when debugging is (but not limited to): the sample_indexes – by setting a random seed, the indexes should be the same each time you run the code

2.4 Assessment

Gradescope will compile and run your code on several test problems. If it passes all tests, you will get 3% of the overall course mark.

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:代寫FINC5090、代做Python語(yǔ)言編程
  • 下一篇:MGMT20005代寫、c/c++,Python程序代做
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    久久99伊人| 希岛爱理av免费一区二区| 伊人久久综合| 日韩成人dvd| 色999韩欧美国产综合俺来也| 亚州av乱码久久精品蜜桃| 国产免费av一区二区三区| 日韩在线视屏| 欧美精品黄色| 激情小说一区| 国模大尺度视频一区二区| 天堂√中文最新版在线| 牛夜精品久久久久久久99黑人| 日韩高清影视在线观看| 老色鬼精品视频在线观看播放| 日韩一区精品视频| 九九久久成人| 天堂va欧美ⅴa亚洲va一国产| 日本美女视频一区二区| 亚洲综合在线电影| 亚洲欧美卡通另类91av| 久久久夜精品| 亚洲宅男一区| 免费在线亚洲欧美| 日韩欧美午夜| 午夜亚洲伦理| 欧洲激情综合| 精品免费在线| 欧美三区不卡| 亚洲婷婷伊人| 亚洲午夜国产成人| 麻豆成人91精品二区三区| 日韩一区亚洲二区| 老司机一区二区三区| 国产精品99免费看| 久久精品官网| 国产香蕉精品| 国产精品毛片久久久| 精品久久亚洲| 亚洲精品亚洲人成在线| 亚洲欧洲专区| 中文成人在线| 99er精品视频| 最新国产精品| 亚洲毛片视频| 亚洲麻豆一区| 亚洲区综合中文字幕日日| 国产一区二区三区久久久久久久久| 欧洲精品一区二区三区| 深夜福利视频一区二区| 中文字幕在线看片| 色喇叭免费久久综合网| 成人影院天天5g天天爽无毒影院| 三级在线观看一区二区 | 亚洲一本二本| 国产精品地址| 欧美日本三区| 久久久久影视| 国产乱码精品一区二区三区亚洲人| 欧美日韩亚洲一区三区| 成人亚洲精品| 最新国产一区| 日韩电影免费在线观看网站| 视频精品国内| 精品久久电影| 免费观看不卡av| 伊人久久综合| 男男成人高潮片免费网站| 国产网站在线| 日本在线视频一区二区| 欧美7777| 99热国内精品| 亚洲综合伊人| 亚洲第一福利专区| 亚洲1区在线观看| 精品国产99| 亚洲国产一成人久久精品| 中国女人久久久| 91亚洲成人| 国产经典一区| 国产精品第十页| 国产不卡一区| 91精品久久久久久综合五月天| 久久黄色网页| 99riav1国产精品视频| 91亚洲国产| 日本一区二区中文字幕| 国产精选久久| 久久97精品| 六月丁香综合| 日韩成人影音| 国内精品久久久久国产盗摄免费观看完整版 | 日韩国产成人精品| 婷婷综合成人| 91精品国产调教在线观看| 99成人在线| 久久99久久99精品免观看软件| 日韩国产高清在线| 日韩欧美影院| 女优一区二区三区| 大桥未久在线视频| 日韩国产欧美在线播放| 午夜日韩影院| 一本一道久久a久久精品蜜桃 | 中文精品久久| 国产精品久久久久av蜜臀| 日韩视频二区| 视频二区不卡| 精品视频在线一区| 欧美黄色免费| 一区中文字幕| 国产亚洲高清视频| 久久不卡日韩美女| 日韩av一区二区三区| 精品一区毛片| а√天堂资源国产精品| 亚洲毛片免费看| 亚洲成人日韩| 韩国女主播一区二区| 亚洲精华一区二区三区| 狠狠入ady亚洲精品| 99只有精品| 777久久精品| 国产精品99视频| 欧美激情1区| 激情视频一区二区三区| 国产综合色区在线观看| 日韩成人一级| 国产一区成人| 欧美日韩综合| 亚洲高清影视| 国产日本精品| 久久九九精品| 99精品在免费线偷拍| 视频国产精品| 黑人巨大精品| 精品国产亚洲一区二区三区| 午夜亚洲福利在线老司机| 综合亚洲视频| 国产农村妇女精品一二区| 另类中文字幕网| 91精品91| 欧美国产精品| 91久久在线| 一区二区三区四区日韩| 欧美日韩国产免费观看视频| 久久精品国产99| 欧美va天堂在线| 麻豆精品蜜桃视频网站| 波多野结衣一区| 麻豆国产精品视频| 婷婷亚洲五月| 综合久久av| 蜜桃久久久久久| 亚洲成a人片77777在线播放| 日韩专区一卡二卡| 亚洲制服欧美另类| a一区二区三区| 欧美色图婷婷| 亚洲国产尤物| 天堂资源在线亚洲| 麻豆一区二区三| 99热免费精品| 亚洲毛片免费看| 亚洲少妇视频| 在线日韩av| 久久久免费毛片| 成人亚洲一区| 欧美亚洲色图校园春色| 国产日韩欧美一区| 亚洲免费一区二区| 九色精品蝌蚪| 国产成人免费精品| 伊人成人在线| 日韩超碰人人爽人人做人人添| 日韩电影一区| 激情欧美一区二区三区| 精品一区二区三区视频在线播放| 日韩av在线中文字幕| 一区二区三区亚洲变态调教大结局 | 久久精品男女| 视频在线在亚洲| 精品国精品国产自在久国产应用| 久久精品伊人| 媚黑女一区二区| 欧美综合精品| 欧美激情视频一区二区三区在线播放| 人人超碰91尤物精品国产| 91国内精品| 日本特黄久久久高潮| h片在线观看视频免费| 久久理论电影| 日韩极品少妇| 久久三级毛片| 97在线精品| 欧美日韩视频| 综合激情久久| 91麻豆精品国产综合久久久| 色在线视频观看| 宅男噜噜噜66国产日韩在线观看|