加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫AI6012程序、代做Java/c++編程
代寫AI6012程序、代做Java/c++編程

時間:2024-09-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



AI6012: Machine Learning Methodologies &
Applications Assignment (25 points)
Important notes: to ffnish this assignment, you are allowed to look up textbooks or
search materials via Google for reference. NO plagiarism from classmates is allowed.
The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
is a single PDF (no source codes are required to be submitted). Multiple submission
attempts are allowed, and the last one will be graded. A submission link is available
under “Assignments” of the course website in NTULearn.
Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
Based on the parametric forms of the conditional probabilities of each class introduced
on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
the learning procedure of regularized logistic regression for multi-class classiffcation
problems.
Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
derive the gradient descent rules to update {w(c)}’s.
Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
1
to
 train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
classiffcation dataset. The details of instructions are described as follows.
1. Download the a9a dataset from the LIBSVM Dataset page.
This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
Learning Repository
2
, which consists of a training set (available here) and a test
set (available here).
Each ffle (the train set or the test set) is a text format in which each line represents
a labeled data instance as follows:
label index1:value1 index2:value2 ...
where “label” denotes the class label of each instance, “indexT” denotes the
T-th feature, and valueT denotes the value of the T-th feature of the instance.
1Read Pages 63-64 of the lecture notes of L5 for reference
2The details of the original Adult dataset can be found here.
1This is a sparse format, where only non-zero feature values are stored for each
instance. For example, suppose given a data set, where each data instance has 5
dimensions (features). If a data instance whose label is “+1” and the input data
instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
+1 1:2 3:2.5 4:4.3
Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
such a sparse data format. Detailed information is available here.
2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter C in
{0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
other parameters, you can simply use the default values or specify the speciffc
values you used in your submitted PDF ffle.
Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
kernel on the a9a training set (in accuracy).
C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
? ? ? ? ?
3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter gamma
(i.e., σ
2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
Note that for all the other parameters, you can simply use the default values or
specify the speciffc values you used in your submitted PDF ffle.
Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
with rbf kernel on the a9a training set (in accuracy).
Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
sciki-learn. However, you can use some APIs under the category “Model Selection
→ Model validation” to implement it. Some examples can be found here.
4. Based on the results shown in Tables **2, determine the best kernel and the best
parameter setting. Use the best kernel with the best parameter setting to train a
SVM using the whole training set and make predictions on test set to generate
the following table:
2Table 3: Test results of SVC on the a9a test set (in accuracy).
Specify which kernel with what parameter setting
Accuracy of SVMs ?
Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
be re-formulated as an instance of empirical structural risk minimization (refer to Page
37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
loss.
Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
linear regression model (L3) to solve nonlinear regression problems. Derive a
closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
Page 50 of L3).


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:公認口碑最好的十個莆田微商,選擇這10個微商沒錯的
  • 下一篇:COMPSCI 315代做、代寫Python/Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    夜夜夜久久久| 国产精品99久久免费观看| 黄色在线免费观看网站| 欧美人成在线观看ccc36| 欧美aaa在线| 国产精品精品| 亚洲国产精品91| 99re91这里只有精品| 一区二区免费不卡在线| 亚洲成a人片| 亚洲男人影院| 久久久人成影片免费观看| 亚洲精品蜜桃乱晃| 亚洲人成免费| 久久亚洲精品爱爱| 免费成人在线网站| 欧美精品一二| 麻豆视频一区| 国产色99精品9i| 国产成人免费av一区二区午夜| 天堂综合在线播放| 伊人久久视频| 男女av一区三区二区色多| 欧美99久久| 久久国产电影| 欧美色资源站| 精品99久久| 清纯唯美激情亚洲| 日本亚洲三级在线| 国产成人精品三级高清久久91| 久久精品天堂| 欧美高清免费| 久久xxx视频| 巨胸喷奶水www久久久| 97精品97| 91欧美日韩| 欧美va久久久噜噜噜久久| 爽好多水快深点欧美视频| 国产精品社区| 亚洲少妇自拍| 日韩有码一区二区三区| 亚洲经典在线看| 9国产精品视频| 国产一级久久| 国产亚洲高清视频| 噜噜噜91成人网| 免费不卡在线观看| 日韩av大片| 日韩电影免费网站| 中文字幕系列一区| 色8久久久久| 欧美在线不卡| 欧美日韩99| 亚洲我射av| 欧美禁忌电影| 在线一区二区三区视频| 成人在线亚洲| 99精品在线免费在线观看| 免费久久久久久久久| 欧美精品一卡| 快she精品国产999| 亚洲天堂资源| 99欧美精品| 亚洲日韩视频| 欧美人与牛zoz0性行为| 亚洲综合色婷婷在线观看| 精品黄色一级片| 亚洲女同中文字幕| 日韩在线观看一区二区| 日本免费一区二区三区四区| 国产成+人+综合+亚洲欧美| 影音先锋在线一区| 亚洲福利天堂| 精品免费在线| 一区久久精品| 在线天堂中文资源最新版| 韩国精品主播一区二区在线观看 | 免费成人在线视频观看| 国产精品yjizz视频网| 日本一区免费网站| 日本中文一区二区三区| 亚洲裸色大胆大尺寸艺术写真| 99久久免费精品国产72精品九九 | 国产精品一区二区三区www| 日韩精选在线| 在线日韩视频| 国产福利片在线观看| 日韩成人综合网| 国产九一精品| 久久久久99| 亚洲欧美日韩国产综合精品二区 | 7777精品| 亚洲精品1区| 成人va天堂| 国产一区二区三区日韩精品| 欧美日韩直播| 蜜桃一区二区三区在线| 国产原创一区| 欧美2区3区4区| 一区二区亚洲| 日韩成人在线一区| 久久综合给合| 一本色道久久精品| 精品福利在线| 91精品尤物| 久热re这里精品视频在线6| 成人国产精选| 91成人福利| 玖玖玖国产精品| 麻豆精品国产传媒mv男同| 一本一道久久a久久| 午夜亚洲影视| 国产欧美日韩亚洲一区二区三区| 日本欧美韩国国产| 99国产精品| 日韩高清中文字幕一区| 精品福利久久久| 激情黄产视频在线免费观看| 95精品视频| 亚洲精品一区二区在线看| 欧美综合影院| av日韩在线播放| 日本久久一二三四| 国产不卡精品| 伊人久久成人| 国产精品hd| 婷婷精品进入| 日韩国产精品久久久久久亚洲| 精品99在线| 亚洲黑人在线| 欧美1区二区| 日本国产一区| 国产精品白丝av嫩草影院| 高清av不卡| 日韩精品一区二区三区免费视频| 亚洲专区一区二区三区| 欧美国产免费| 99日韩精品| 成人精品在线| 亚洲欧美视频| 国产一区二区三区四区大秀| 中文日韩在线| 欧州一区二区三区| 久久亚洲精选| 日韩成人伦理电影在线观看| 91一区二区三区四区| 国产日本亚洲| 国产一区二区久久久久| 色老板在线视频一区二区| 日韩深夜福利网站| 免费不卡中文字幕在线| 在线精品一区| 久久国产66| 精品国产亚洲一区二区在线观看 | 久久中文字幕导航| 亚洲中字黄色| 九九九九九九精品任你躁| 久草在线资源福利站| 精品视频免费| 麻豆精品精品国产自在97香蕉| 狠狠入ady亚洲精品| 国产成人手机高清在线观看网站| 米奇777在线欧美播放| 日韩有吗在线观看| 福利一区二区| aa国产精品| 日韩成人精品| 久久91视频| 伊人久久大香线蕉综合热线| 亚洲免费成人av在线| 欧美sm一区| 亚洲精品97| 日韩成人18| 美女国产一区二区三区| 伊人成人网在线看| 蜜桃精品视频| 日韩国产精品91| 岛国av在线播放| 欧美jjzz| 亚洲天堂中文字幕在线观看| 久久精品理论片| 蜜桃视频第一区免费观看| 精品一区电影| 欧美国产中文高清| 日韩毛片在线| 男女精品网站| 麻豆成人入口| 国产一区二区在线观| 亚洲黑人在线| 人人精品人人爱| 久久国产亚洲精品| 精品一级视频| 国产精品v日韩精品v欧美精品网站| 国产精品99久久精品| 亚洲高清激情| 一区二区在线视频观看| 欧美黄色精品| 亚洲高清网站| 在线天堂资源www在线污| 亚洲黄色在线|