加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    成人精品在线| 香蕉久久夜色精品| 国产一精品一av一免费爽爽| 91偷拍一区二区三区精品| 色婷婷久久久| 婷婷综合电影| 久久只有精品| 激情国产在线| 黑人一区二区| 青青草97国产精品麻豆| 综合久久伊人| 日本久久二区| 四虎国产精品免费观看| 欧美综合在线视频观看| 日韩精品视频中文字幕| 日本在线不卡一区| 日韩电影免费在线观看| aa国产精品| 久久视频一区| 日韩激情欧美| 国产一区二区三区精品在线观看 | 国产欧美日韩精品一区二区免费| 日本一区二区三区视频在线| 日韩制服丝袜先锋影音| 91精品福利| 久久国产精品亚洲人一区二区三区| 亚洲美女15p| 国产精品亚洲一区二区在线观看| 99精品免费网| 羞羞视频在线观看一区二区| 亚洲欧美se| 男人的天堂久久精品| 一本久久综合| 亚洲高清影视| 天堂网在线观看国产精品| 亚洲成人tv| 少妇久久久久| 久久久噜噜噜| 蜜桃一区av| 久久久精品网| 天堂资源在线亚洲| 亚洲高清不卡| 免费黄色成人| 伊人色**天天综合婷婷| 国产高清一区| 欧美特黄一区| 国产精品婷婷| 视频精品一区二区| 水蜜桃久久夜色精品一区| 成人精品电影| 超碰成人av| 日韩夫妻性生活xx| 99久久婷婷国产综合精品首页| 日韩久久一区二区三区| 亚洲www啪成人一区二区| 2019年精品视频自拍| 99久久综合国产精品二区| 成人四虎影院| 久久字幕精品一区| 欧美国产精品| 日韩av网址大全| 亚洲一区二区三区四区电影| 欧美视频一区| 99精品在线免费在线观看| 1024日韩| 美女精品一区| 日韩免费福利视频| 一区二区国产精品| 久久久久高潮毛片免费全部播放| 亚洲免费资源| 视频亚洲一区二区| 欧美日韩水蜜桃| 在线综合亚洲| 天堂av在线网| 日韩精品国产欧美| 国产高清视频一区二区| 日本亚洲视频在线| 久久狠狠婷婷| 午夜一区二区三区不卡视频| 伊人久久av| 日日夜夜精品视频天天综合网| 亚洲精品自拍| 精品一区二区三区的国产在线观看| 久久精品播放| 免费不卡在线观看| 国产精品久久久久久久久久齐齐| 久久资源综合| 国产精品22p| 国产精品女主播一区二区三区| 激情黄产视频在线免费观看| 一区二区日本视频| 日韩美女国产精品| 国产在线日韩| av手机在线观看| 亚洲狼人精品一区二区三区| 日韩高清二区| 狠狠干成人综合网| 四虎4545www国产精品| 9999精品视频| 日韩精品午夜| 国产va在线视频| 最新国产精品| 999国产精品999久久久久久| 蜜臀av在线播放一区二区三区| 亚洲91在线| 日本一区二区乱| 国产精品日韩| 久久精品理论片| 日韩精品三级| 鲁大师成人一区二区三区| 一区二区三区福利| 亚洲啊v在线免费视频| 先锋亚洲精品| 日韩黄色在线| 欧美日韩一本| 日韩在线观看| 亚洲精品进入| 亚洲美洲欧洲综合国产一区| 成人精品国产亚洲| 国产精品美女在线观看直播| 午夜在线观看免费一区| 亚洲伦伦在线| 在线视频观看日韩| 四虎精品永久免费| 精品国产一区二区三区av片 | 亚洲黄页一区| 欧美激情啪啪| 六月丁香久久丫| 欧美aa一级| 少妇精品在线| 亚洲永久av| 久久久久毛片免费观看| 免费国产亚洲视频| www一区二区三区| 一区免费在线| 一区二区在线影院| 欧美日韩少妇| 91精品一区| 亚洲欧美视频| 国产高清亚洲| 久久亚洲欧美| 日韩大片在线免费观看| 色小子综合网| 视频精品国内| 中文另类视频| 久久蜜桃资源一区二区老牛| 日韩色性视频| 欧美.www| 欧美激情综合色综合啪啪| 午夜欧美精品久久久久久久| 国产精品啊啊啊| 亚洲免费成人| 偷拍自拍一区| 免费一二一二在线视频| 精品国产成人| 国产一区二区三区的电影| 视频一区中文| 国产一区精品二区| 成人一级毛片| 国产无遮挡裸体免费久久| 久久久久久久性潮| 亚洲精品小说| 亚洲欧美tv| 亚洲精品在线影院| 在线日韩av| 精品一区二区三区免费看| 97人人精品| 精品亚洲精品| 亚洲国产精品一区| 蜜桃一区二区三区在线观看| 国产精品任我爽爆在线播放| 欧美在线国产| 亚洲一级在线| 4438全国亚洲精品观看视频| 国产精品久久乐| 中文一区二区| 99久热这里只有精品视频免费观看| 国产极品一区| 久久高清国产| 精品视频自拍| 超碰国产精品一区二页| 中文字幕在线免费观看视频| 久久久999| 国产成人精品三级高清久久91| 中文在线免费视频| 婷婷久久一区| 日韩欧美一级| 国产日韩亚洲欧美精品| 久久夜色精品| 99久久久久| 亚洲国产欧美日韩在线观看第一区| 日韩成人av电影| 狠色狠色综合久久| www.丝袜精品| 国产亚洲高清一区| 欧美成a人片免费观看久久五月天 日本中文字幕视频一区 | 另类激情视频| 欧美午夜不卡| 精品视频高潮| 偷窥自拍亚洲色图精选|