加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩欧美一区免费| 红桃视频国产精品| 老司机午夜精品| 老司机午夜精品视频在线观看| 日韩美女国产精品| 久久精品资源| 日av在线不卡| 欧美jjzz| 国产成人高清精品免费5388| 一区二区在线影院| 高清亚洲高清| 色小子综合网| 91久久中文| 久久黄色影院| 日韩一区免费| 成人自拍视频| 久久一区激情| 欧美gv在线| 色综合久久一区二区三区| 激情丁香综合| 欧美a大片欧美片| 国产一卡不卡| 欧美日一区二区在线观看 | 高清精品久久| 久久精品xxxxx| 日韩电影免费网站| 美女91精品| 伊人久久成人| 欧美日韩在线播放视频| 一区二区三区在线免费看| 综合久久十次| 在线精品在线| 青青草91视频| 一区二区久久| 国产一区 二区| 久久91导航| 午夜欧美巨大性欧美巨大| 蜜桃久久久久久| 免费日韩av片| 亚洲欧美日本视频在线观看| 亚洲精品a级片| 激情久久久久| av一区二区高清| 久久裸体网站| 欧美一二区在线观看| 久久久久久久久国产一区| 国产色噜噜噜91在线精品| 成人av婷婷| 国产精品美女在线观看直播| 一区二区免费| 精品国产一区二区三区av片| 国产66精品| 久久久亚洲一区| 亚洲无线视频| 亚洲欧洲日本mm| 亚洲欧美日韩视频二区| 玖玖玖国产精品| 爱搞国产精品| 色一区二区三区| 精品成人免费一区二区在线播放| 日本精品在线中文字幕| 亚洲成人高清| 日本中文在线一区| 亚洲最大av| 亚洲动漫精品| 999久久精品| 国产精品色在线网站| 91精品国产91久久综合| sdde在线播放一区二区| 99伊人成综合| 春色校园综合激情亚洲| 日韩欧美自拍| 日欧美一区二区| 97色婷婷成人综合在线观看| 国产精品亚洲二区| 我要色综合中文字幕| 成人av影音| 欧美成人日韩| 蜜桃视频第一区免费观看| 92国产精品| 免费亚洲视频| 久久av资源| 成人在线视频免费观看| 免费视频亚洲| 欧美丰满老妇| 国产一区二区久久久久| 国语精品一区| 日韩在线精品强乱中文字幕| 99国产**精品****| 玖玖国产精品视频| 日本一区二区三区视频在线| 欧美aaaaaa午夜精品| 亚洲宅男一区| 久久福利综合| 日韩精品一卡二卡三卡四卡无卡| 麻豆精品蜜桃| 国产探花在线精品| 久久久久久久久久久9不雅视频| 中文精品视频| 色天使综合视频| 国产专区精品| 亚洲一级黄色| 日韩国产一区| 亚洲一区二区小说| 视频小说一区二区| 国产精品99久久久久久动医院| 国精品产品一区| 久久99精品久久久野外观看| 欧美精品一二| 日本成人在线网站| 亚洲电影男人天堂| 蜜桃成人av| 亚瑟国产精品| 日韩精品成人| 美女尤物久久精品| 欧美aaaaaa午夜精品| 高清欧美性猛交xxxx黑人猛 | 国产中文在线播放| 国产成人免费av一区二区午夜| 秋霞影视一区二区三区| 色综合天天爱| 国产一区二区三区视频在线| 欧美日中文字幕| 欧美不卡高清一区二区三区| 婷婷综合福利| 国产亚洲网站| 一区二区不卡| 九九久久精品| 日韩精品欧美精品| 欧美18免费视频| 日韩精品免费观看视频| 网站一区二区| 欧美3p视频| 亚洲最好看的视频| 香蕉亚洲视频| 国产精品一区二区美女视频免费看| 99国内精品久久久久久久| 午夜影院一区| 日韩一区二区三区色| 不卡专区在线| 久久精品一级| av中文在线资源库| 精品视频在线播放一区二区三区 | 日韩电影免费在线看| 日韩中文字幕亚洲一区二区va在线 | 韩国女主播一区二区| 欧美精品momsxxx| 日韩在线一二三区| 亚欧日韩另类中文欧美| 免费观看在线综合| 警花av一区二区三区| 一本色道久久综合亚洲精品不卡| 麻豆成人在线观看| 欧洲美女日日| 在线不卡一区| 国产亚洲一区在线| 国产真实有声精品录音| 人人精品人人爱| 亚洲3区在线| 亚洲精品tv| 欧美精选视频在线观看| 亚洲伦伦在线| 日韩专区一卡二卡| 88久久精品| 久久精品黄色| 伊人成人在线| 日韩av不卡一区二区| 免费毛片b在线观看| 久久久久久久久久久9不雅视频| 一本综合久久| 亚洲欧美日韩国产综合精品二区| 国际精品欧美精品| 欧美成人精品一区二区男人小说| 白嫩白嫩国产精品| 国产激情欧美| 夜夜精品视频| 日韩一区二区三区色| 国产精品久久久久久久久久齐齐| 亚洲精品一区二区在线看| 欧美精品影院| 91成人在线| 国产婷婷精品| 18国产精品| 亚洲三级网站| 九色porny自拍视频在线播放| 欧美巨大xxxx| 国产精品777777在线播放 | 91嫩草精品| 亚洲麻豆av| 欧美男人天堂| 亚洲精品在线观看91| 日韩福利视频导航| 久久精品国产精品青草| 老司机午夜精品视频| 精品素人av| 欧美欧美黄在线二区| 国产亚洲欧美日韩精品一区二区三区 | 免费毛片b在线观看| 欧美日韩国产传媒| 1769国产精品视频|