加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS3208、代做Python語言編程
代寫INFS3208、代做Python語言編程

時間:2024-10-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Information Technology and Electrical Engineering 
INFS**08 – Cloud Computing 
Programming Assignment Task III (10 Marks) 
Task description: 
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
UN debates and find the most similar debate contents. The returned result should be the top 10 
verbs that are most frequently used in all debates and the debate that is most similar to the one 
we provide. This assignment is to test your ability to use transformation and action operations in Spark 
RDD programming and your understanding of Vector Database. You will be given three files, 
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
some technical requirements in your code submission as follows: 
 
Objectives: 
1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
convert only the “text” column into an RDD. Details of un-general-debates.csv are 
provided in the Preparation section below (1 mark). 
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
HDFS and load them into separate RDDs (0.5 marks). 
• Note: If you failed to read files from HDFS, you can still read them from the local file 
system in work/nbs/ and complete the following tasks. 
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
• Remove empty lines (0.5 marks). 
• Remove punctuations that could attach to the verbs (0.5 marks). 
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
punctuation. 
• Change the capitalization or case of text (0.5 marks). 
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
DO NOT make all of them in lower-case. 
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
(0.5 mark). 
• Convert all verbs in different tenses into the simple present tense by looking up the 
verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
o E.g., regular verb: “work” - works”, “worked”, and “working”. 
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
“were”, “being” and “been”. 
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
• Count the top 10 frequently used verbs in UN debates (2 marks). 
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
descending order of the counts (1 marks). 
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
• Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
• Search the debate content that has the most similar idea to “Global climate change is 
both a serious threat to our planet and survival.” (1 mark) 
 
 
Preparation: 
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
understand what the task is and what the technical requirements include. Secondly, you should review 
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
All technical requirements need to be fully met to achieve full marks. You can either practise on 
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
read the Example of writing Spark code below to have more details. 
 
 
Assignment Submission: 
 You need to compress only the Jupyter Notebook (.ipynb) file. 
 The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
 You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
 Only one extension application could be approved due to medical conditions. 
 
 
Main Steps: 
Step 1: 
Log in your VM instance and change to your home directory. We recommend using a VM instance 
with at least 4 vCPUs, 8G memory and 20GB free disk space. 
 
Step 2: 
git clone https://github.com/csenw/cca3.git && cd cca3 
Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
sudo chmod -R 777 nbs/ 
docker-compose up -d 
Run all the containers using docker-compose 
 
 
 
Step 4: 
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
 
 Step 5: 
docker ps 
docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
your namenode container ID. After that, you should see the three files from HDFS web interface at 
http://external_IP/explorer.html 
 
 
Step 6: 
The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
forty years of data from different countries, which allows for the exploration of differences between 
countries and over time [1,2]. It is organized in the following format: 
 
In this assignment, we only consider the “text” column. 
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
is the simple present tense of the verb. 
 The all_verbs.txt file contains all the verbs. 
 
 
Step 7: 
Create a Jupyter Notebook to complete the programming objectives. 
We provide some intermediate output samples below. Please note that these outputs are NOT answers 
and may vary from your outputs due to different implementations and different Spark behaviours. 
• Intermediate output sample 1, take only verbs: 
 
 
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
 
 • Intermediate output sample 3, most similar debate: 
 
You are free to use your own implementation. However, your result should reasonably reflect the top 
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
sentence “Global climate change is both a serious threat to our planet and survival.” 
 
 
Reference: 
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
 
 Appendix: 
Transformations: 
Transformation Meaning 
map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func. 
filter(func) Return a new dataset formed by selecting those elements of the source on 
which funcreturns true. 
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item). 
union(otherDataset) Return a new dataset that contains the union of the elements in the source 
dataset and the argument. 
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
dataset and the argument. 
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
dataset. 
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. 
Note: If you are grouping in order to perform an aggregation (such as a 
sum or average) over each key, using reduceByKey or aggregateByKey will 
yield much better performance. 
Note: By default, the level of parallelism in the output depends on the 
number of partitions of the parent RDD. You can pass an 
optional numPartitions argument to set a different number of tasks. 
reduceByKey(func, 
[numPartitions]) 
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where the values for each key are aggregated using the given reduce 
function func, which must be of type (V,V) => V. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second 
argument. 
sortByKey([ascending], 
[numPartitions]) 
When called on a dataset of (K, V) pairs where K implements Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the boolean ascending argument. 
join(otherDataset, 
[numPartitions]) 
When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
 
 Actions: 
Action Meaning 
reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative 
and associative so that it can be computed correctly in parallel. 
collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data. 
count() Return the number of elements in the dataset. 
first() Return the first element of the dataset (similar to take(1)). 
take(n) Return an array with the first n elements of the dataset. 
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
with the count of each key. 
foreach(func) Run a function func on each element of the dataset. This is usually done 
for side effects such as updating an Accumulator or interacting with 
external storage systems. 
Note: modifying variables other than Accumulators outside of 
the foreach() may result in undefined behavior. See Understanding 
closures for more details. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫comp2022、代做c/c++,Python程序設計
  • 下一篇:代做320SC編程、代寫Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    欧美2区3区4区| 免费成人你懂的| 日本在线播放一区二区三区| 久久国产三级精品| 亚洲精品社区| 欧美久久亚洲| 欧美a一欧美| 波多野结衣在线播放一区| 136国产福利精品导航网址| 亚洲视频一起| 亚洲ww精品| 日韩高清在线免费观看| 欧美xxav| 亚洲伊人春色| 蜜臀国产一区| 日本在线不卡一区| 亚洲一区二区网站| 日韩高清在线观看| 丝袜亚洲另类欧美| 欧美亚洲综合视频| 欧美午夜a级限制福利片| 二吊插入一穴一区二区| 免费久久99精品国产| 国产成人影院| 日韩成人激情| 蜜桃一区av| 欧美影院视频| av一区在线播放| 日韩五码在线| 激情久久一区二区| 日韩网站在线| 欧美日韩夜夜| 久久av免费| 成人精品高清在线视频| 国产精品手机在线播放 | 亚洲乱码视频| 久久久人成影片一区二区三区在哪下载| 精品日本12videosex| 日韩成人免费在线| 麻豆精品在线看| 日韩在线观看| 老鸭窝毛片一区二区三区| 欧美亚洲高清| 蜜桃在线一区| 欧美另类中文字幕| 欧美日韩亚洲国产精品| a国产在线视频| 欧美一级二级三级视频| 国产一区二区三区日韩精品| 日日骚欧美日韩| 亚洲va中文在线播放免费| 亚洲制服少妇| 欧美日韩国产免费观看视频| 国产96在线亚洲| 久久99成人| 成人在线视频观看| av免费不卡国产观看| 亚洲欧美日韩精品一区二区| 欧美1区视频| 欧美sss在线视频| 99热这里只有精品首页| 亚洲情侣在线| 欧美1级2级| 黄色欧美成人| 成人性生交大片免费看96| 国产精品草草| 91在线亚洲| 蜜桃在线一区二区三区| 欧美日韩一区二区综合| 亚洲成a人片77777在线播放 | 日韩在线精品强乱中文字幕| 亚洲色图综合| 成人免费观看49www在线观看| 欧美精品97| 成人精品在线| 国产剧情一区二区在线观看| 一区二区三区四区日韩| 亚洲国产精品第一区二区三区 | 一本一本久久| 亚洲专区欧美专区| 免费看的黄色欧美网站| 日韩一区精品视频| 香蕉国产精品| 99久久亚洲精品| 97视频一区| 亚洲小说图片| 高清在线一区二区| 国产尤物久久久| 亚洲女娇小黑人粗硬| 日韩成人av在线资源| 无码少妇一区二区三区| 亚洲一区二区三区在线免费| 国产成人aa在线观看网站站| 色老板在线视频一区二区| 国内精品伊人久久久| 午夜日韩电影| 亚洲欧美日本视频在线观看| 蜜桃av一区二区| 日韩久久精品| 久久一区激情| 亚洲欧美在线综合| 日韩精品免费视频一区二区三区| 911亚洲精品| 免费观看成人www动漫视频| 欧美亚洲精品在线| 欧美特黄一区| 欧美r级电影| 婷婷成人av| 日本成人超碰在线观看| 国产精品一区二区av交换| 日韩av二区在线播放| 精品久久久久久久久久久aⅴ| 久久五月天小说| 水蜜桃久久夜色精品一区的特点| 在线精品亚洲欧美日韩国产| 老司机精品视频网| 91麻豆精品国产综合久久久| 日韩超碰人人爽人人做人人添| 福利片在线一区二区| 精品日韩一区| 99热国内精品| 欧美另类综合| 老司机精品视频网站| 亚洲成人va| 国产亚洲电影| 激情综合视频| 国产v日韩v欧美v| 国产精品啊啊啊| 国产精品调教| 噜噜爱69成人精品| 久色婷婷小香蕉久久| 亚洲va久久久噜噜噜久久| 天天久久夜夜| av资源在线播放| 日本麻豆一区二区三区视频| 中文字幕一区二区三区四区久久 | 先锋亚洲精品| 日韩色性视频| 精品亚洲a∨一区二区三区18| 欧美中文一区二区| 三级成人在线| 综合干狼人综合首页| 一精品久久久| 久久久久久久性潮| 视频一区日韩精品| 午夜一区不卡| 最新国产精品| 99精品国产一区二区三区| 色偷偷综合网| 亚洲我射av| 国产精品丝袜在线播放| 欧美成人一区在线观看| 视频一区二区三区入口| 亚洲a成人v| 婷婷精品在线观看| 中文日韩欧美| 亚洲欧洲二区| 红桃视频欧美| 欧美精品18| 黑丝一区二区三区| 欧美wwwww| 亚洲精品护士| 国精品一区二区| 成人h在线观看| 好吊妞国产欧美日韩免费观看网站| 色777狠狠狠综合伊人| 欧美人与物videos另类xxxxx| 亚洲一区二区三区免费在线观看| 日韩国产一区二| 中国av一区| 日韩美女在线| julia中文字幕一区二区99在线| 久久久久久婷| 日本少妇精品亚洲第一区| 不卡视频在线| 国产精品hd| 国产亚洲欧洲| 综合干狼人综合首页| 久久午夜视频| 国精一区二区| 97精品视频| 中文字幕免费一区二区| 欧美日韩三级电影在线| 欧美日韩a区| 国精品一区二区三区| 亚洲国产精品一区| 欧美精品一卡| 国产乱码精品一区二区三区四区| 在线综合亚洲| 日韩1区2区3区| 蜜桃精品在线| 亚洲特色特黄| 成人在线视频www| 久久久久久穴| 女同一区二区三区| 99久久精品一区二区成人| 成人中文在线| 一区二区毛片| 伊人春色精品| 精品欧美日韩精品|