加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS 259、Java/c++設計程序代寫
代做CS 259、Java/c++設計程序代寫

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Fall 2024 
CS 259 Lab 1 
Accelerating Convolutional Neural Network (CNN) on FPGAs using 
Merlin Compiler 
Due October 9 11:59pm 
Description 
Your task is to accelerate the computation of two layers in a convolutional neural network 
(CNN) using a high-level synthesis (HLS) tool on an FPGA. We encourage you to start with 
using the Merlin Compiler. For an input image with 228 × 228 pixels and 256 channels, you 
are going to calculate the tensor after going through a 2D convolution layer and a 2D max 
pooling layer. The convolution layer has 256 filters of shape 256 × 5 × 5, uses the ReLU 
activation relu(x) = max{x, 0} with a bias value for each output channel. The 2D maxpooling
 layer operates on 2 × 2 non-overlapping windows. You will need to implement this 
function using HLS: 
void CnnKernel(const float* input, const float* weight, const float* bias, float* 
output) 
where input is the input image of size [256][228][228], weight stores the weights of the 
convolution filters of size [256][256][5][5], bias stores the offset values of size [256] that 
will be added to the output channels, and output should be written to by you as defined 
above to store the result of maxpool(relu(conv2d(input, weight) + bias)). The output 
size is [256][112][112]. 
How-To 
FPGA accelerator compilation typically involves three (3) stages: high-level synthesis (HLS), 
bitstream generation, and onboard execution. The last two stages can take days to 
complete. Therefore, in this lab, we only focus on the first stage: HLS. Your performance will 
only be assessed using the estimation in the HLS reports, which is usually accurate. 
However, you are welcome to try out the last two steps if you are interested. 
 
 
 
Connecting to the Server: Method 1 
In this method, you won’t be able to run Merlin directly from your /home directory, so you’ll need 
to copy files back and forth. 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients  
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Source Vitis, navigate to the desired directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /opt 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
 
4. Copy the necessary file to your home directory: 
 
cp /opt/cs-259-f24/lab1/cnn-krnl.cpp /home/<username> 
Connecting to the Server: Method 2 
In this method, you can run Merlin directly from your /home directory, but make sure to export your 
home directory. 
 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients 
 
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run --user $(id -u):100 -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Export your home directory: 
 
export HOME=/home/<username> 
 
4. Source Vitis, navigate to your home directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /home/<username> 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
Build and Run Baseline with Software Simulation 
We have prepared the starter kit for you. Please run: make 
This command will perform a software simulation of the provided starter FPGA HLS kernel. It 
should show “PASS”. You need to use FPGA Developer AMI in this lab unless you are using 
a computer with Xilinx Vitis HLS installation. However, you are still suggested to develop code 
and run software simulation locally to test the correctness. You can move to AWS once you 
enter the tuning stage. 
Understand the automatic Merlin’s optimization 
Before modifying the kernel and adding pragmas, synthesize the CNN kernel with Merlin and 
describe in your report the automatic optimizations made by Merlin and how this reduces 
latency. 
Modify the HLS CNN Kernel 
If you have successfully built and run the baseline HLS CNN kernel, you can now optimize 
the code to design your CNN kernel. Your task is to implement a fast, parallel version of the 
CNN kernel on FPGA. You should start with the provided starter kit. You should edit cnnkrnl.cpp
for this task. When editing, please use the given types input_t, weight_t, bias_t, 
and output_t for the corresponding data, and compute_t for your intermediate values. 
You can use them as if they are float numbers. 
Parallelism should be exploited by using Merlin pragmas and tiling. You are encouraged to 
focus on Merlin pragmas (#pragma ACCEL parallel, #pragma ACCEL pipeline and #pragma 
ACCEL tile). You can explicitly modify the code (tiling, loop permutation, …) but make sure 
the code modified is correct. 
In the starter kit, we simply wrap a sequential CNN code with #pragma ACCEL kernel, and 
Merlin automatically performs data caching, memory coalescing, pipelining and 
parallelization, which yield about 10 GFLOPs. 
Although the skeleton kernel is provided, you are also free to create your own by removing 
the header file inclusion of “lib/cnn-krnl.h” and implement the basic kernel from scratch. 
However, this would require specific expertise in Xilinx FPGA architecture and is not 
recommended for this course. 
Test Your HLS CNN Kernel with Software Simulation 
To perform software emulation of your FPGA implementation of CNN kernel: 
make 
If you see something similar to the following message, your implementation is incorrect. 
Found 21201** errors 
FAIL Since the software simulation step uses the CPU to emulate the hardware behavior, it only 
serves as correctness test and its execution time doesn’t reflect that of actual hardware. Your 
estimated execution time should be retrieved using the command below: 
make estimate 
This command will print out the estimated latency and resource usage of your kernel: 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
| Kernel | Cycles | LUT | FF | BRAM | DSP | URAM |Detail| 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
|CnnKernel (cnn-krnl.cpp:12)|4179564052 (16718.256ms)|49558 (4%)|49381 (2%)|810 (18%)|202 (2%)|25 (2%)|- | 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
The time highlighted in yellow is the estimated execution time of your FPGA kernel. You can 
get the performance by “kNum*kNum*kImSize*kImSize*kKernel*kKernel*2/latency”, or 
164.4/latency (in s) to get the performance in GFLOPS. 
IMPORTANT: Please make sure that all your loops have fixed loop bounds. If any of the loop 
bounds are variable, a performance estimation will not be shown and you will receive no 
performance grade. 
IMPORTANT: The “make estimate” command should finish in 30 minutes, or in two hours 
with highly-complex optimizations. Our recommendation is to halt your estimation using 
Ctrl-C when the time exceeds 30 minutes, except for your last step (after you reach ~100 
GOPS). More than 12 hours in the estimation will result in zero for the performance score. 
As your kernel design becomes more complex, the software simulation and the estimation 
will start to take a significantly longer time. 
IMPORTANT: As you apply more optimizations, your resource usage will also increase. 
Ideally, you should keep applying optimization until your kernel occupies about 80% of these 
resources. The remaining 20% should be reserved for the interfaces (DRAM/PCI-e controller) 
and the downstream flows. Please make sure that resource utilization is less than 80% for all 
FPGA resources. If any of the resources are over this limit, you will receive no performance 
grade. 
IMPORTANT: You can check the HLS report by opening merlin.rpt with a text editor. This 
file will be generated with the command make estimate. You must submit this file with your 
final submission. You should not modify this file in your submission, and it will be all verified 
after submission due. Any modification to this file in your submission constitutes academic 
misconduct and will be reported. 
Advanced Tips for HLS 
Kernel Profiling: If you want to “profile” your kernel, you can open merlin.rpt with a text 
editor and scroll down to Performance Estimate. You can see the trip count, accumulated 
cycles and cycles per call, as well as pipeline initiation interval and parallel factor for each 
loop in the table. For resource usage, you can go to Resource Estimate. No loop level 
information is available, though. If you want to check the resource usage of a code region, 
you can wrap it with a function then run again. 
Kernel after transformation: If you want to see the kernel after being transformed by Merlin, 
you can look for that in .merlin_prj/run/implement/exec/hls/kernel. Annotation for Profiling: If you find the loops in your report hard to read, you can name the 
loops you are interested in using a goto label. For example, this_loop: for (int i = 0; 
i < n; i++); 
Debugging Pipelining: If you are not sure about why you cannot achieve a specific initiation 
interval as you expected, you can open the file below and read the logs. HLS usually gives out 
a reason. 
.merlin_prj/run/implement/exec/hls/_x/logs/CnnKernel/CnnKernel/vitis_hls.log 
Long Synthesis Time In Pipelining: You will experience long HLS synthesis time (for 
generating the estimation) if you pipeline a loop with a large loop body. Besides, please note 
that as all loops inside a pipeline will be unrolled, it may be automatically a large loop body. 
In this case, you may want to exchange the order of pipelining and unrolling and see if the time 
can get improved. 
Use Functions for Shorter Synthesis Time: If you experience long synthesis time, you may try 
wrapping some loops into a function and specify #pragma HLS inline off inside the 
function body. However, this may lead to inaccurate dependency analysis or memory port 
analysis and cause lower performance sometimes. There might be some workarounds, or 
not. For example, if you have access to A[k + i][j] inside the function, passing A + k to 
the function and accessing A’[i][j] can allow HLS to understand the array partitioning 
better than passing A. You need to do experiments. 
General Tips 
● When you develop on AWS, to resume a session in case you lose your connection, you 
can run screen after login. You can recover your session with screen -DRR. You should 
stop your AWS instance if you are going to come back and resume your work in a few 
hours or days. Your data will be preserved but you will be charged for the EBS storage 
for $0.10 per GB per month (with default settings). You should terminate your instance 
if you are not going to come back and resume your work. Data on the instance will be 
lost. 
● You are recommended to use private repositories provided by GitHub to backup your 
code. Never put your code in a public repo to avoid potential plagiarism. To check in 
your code to a private GitHub repo, create a repo first. 
git branch -m upstream 
git checkout -b main # skip these two lines if you are reusing the folder in Lab 1 
... // your modifications 
git add cnn-krnl.cpp merlin.rpt 
git commit -m "lab1: first version" # change commit message accordingly 
# please replace the URL with your own URL 
git remote add origin git@github.com:YourGitHubUserName/your-repo-name.git 
git push -u origin main 
● You are recommended to git add and git commit often so that you can keep track of 
the history and revert whenever necessary. 
● Make sure your code produces correct results! 
(Optional) Modify the HLS CNN Kernel using Vitis Pragmas 
You are encouraged to use mainly Merlin pragmas. If needed, you can use Vitis pragmas for 
finer-grained control and optimization. The list of pragmas in Vitis can be found here. You can simply write Vitis pragmas and Merlin pragmas in the same file (cnn-krnl.cpp), but note 
that, to apply an HLS pragma to a loop, you need to put the pragma inside the loop body 
instead of before it. 
Submission 
You need to report the estimated performance results of your FPGA-based implementation on 
a Xilinx Ultrascale+ VU9P FPGA (the FPGA we are using, specified in the makefile). Please 
express your performance in GFLOPS and the speedup compared with the starter-kit version. 
Your report should also include: 
● Please run the input C file through the Merlin Compiler, identify the code 
transformation and HLS pragmas that Merlin added, and discuss why. 
● Please explain the parallelization and optimization strategies you have applied for 
each loop in the CNN program (convolution, max pooling, etc) in this lab. Include the 
pragmas (if any) or code segments you have added to achieve your strategy. 
● Please incrementally evaluate each parallelization/optimization that you have applied 
and explain why it improves the performance. 
● Please report the FPGA resources (LUT/FF/DSP/BRAM) usages, in terms of resource 
count and percentage of the total. Which resource has been used most, in terms of 
percentage? 
● Optional: The challenges you faced, and how you overcame them. 
● (Bonus +5pts): Analyze your code and check if the DSP/BRAM resource usage 
matches your expectation. Only the adders, multipliers, and size of arrays need to be 
considered. Please attach related code segments to your report and show how you 
computed the expected number. Provide a discussion on possible reasons if they 
differ significantly. 
You also need to submit your optimized kernel code. Do not modify code in the lib directory. 
Please submit on Gradescope. Your final submission should contain and only contain these 
files individually: 
 ├ cnn-krnl.cpp 
 ├ merlin.rpt 
 └ lab**report.pdf 
File lab**report.pdf must be in PDF format. 
Grading Policy 
Your submission will only be graded if it complies with the formatting requirements. 
Missing reports/code or compilation errors will result in 0 for the corresponding 
category(ies). 
Correctness (40%) 
Please check the correctness using the command “make”. Performance (40%) 
Your performance will be evaluated based on the estimation report generated using the 
command “make estimate”. The performance point will be added only if you have the 
correct result, so please prioritize the correctness over performance. Your performance will 
be evaluated based on the ranges of throughput (GOPS). Ranges A+ and A++ will be defined 
after all the submissions are graded: 
● Range A++, better than Range A+ performance: 40 points + 20 points (bonus) 
● Range A+, better than Range A performance: 40 points + 10 points (bonus) 
● Range A GFLOPS [200, 280]: 40 points 
● Range B GFLOPS [120, 200): 30 points 
● Range C GFLOPS [60, 120): 20 points 
● Range D GFLOPS [30, 60): 10 points 
● Lower than range F [0, 30): 0 points 
 
Report (20%) 
Points may be deducted if your report misses any of the sections described above. 
Academic Integrity 
All work is to be done individually, and any sources of help are to be explicitly cited. You must 
not modify the HLS report merlin.rpt in your submission. Any instance of academic 
dishonesty will be promptly reported to the Office of the Dean of Students. Academic 
dishonesty includes, but is not limited to, cheating, fabrication, plagiarism, copying code from 
other students or from the internet, modifying the software-generated report, or facilitating 
academic misconduct. We’ll use automated software to identify similar sections between 
different student programming assignments, against previous students’ code, or against 
Internet sources. We’ll run HLS on all submissions and compare the reproduced HLS 
report with the submitted report. Students are not allowed to post the lab solutions on public 
websites (including GitHub). Please note that any version of your submission must be your 
own work and will be compared with sources for plagiarism detection. 
Late policy: Late submission will be accepted for 24 hours with a 10% penalty. No late 
submission will be accepted after that (you lost all points after the late submission time). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE4016、Python設計編程代做
  • 下一篇:DDA3020代做、代寫Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91成人精品观看| 可以看av的网站久久看| 影音先锋久久资源网| 日韩中文欧美在线| 国产精品久久久网站| 青青草成人在线观看| 欧美残忍xxxx极端| 欧美日韩中文一区二区| 欧美一区一区| 神马久久资源| 久久国产精品久久w女人spa| 粉嫩久久久久久久极品| 一区二区三区国产精华| 性欧美videohd高精| 在线综合亚洲| 激情亚洲另类图片区小说区| 2019中文亚洲字幕| 亚洲www啪成人一区二区| 亚洲中午字幕| 亚洲电影在线| 国产成人福利av| 亚洲资源网你懂的| 亚洲人成毛片在线播放女女| 国产h片在线观看| 日韩亚洲国产欧美| 一区三区在线欧| 成人中文字幕视频| 日韩极品在线| 成人在线精品| 欧美日本不卡高清| 日韩午夜视频在线| 成人美女视频| 欧美残忍xxxx极端| 亚洲女优在线| 伊人久久亚洲美女图片| 91精品综合| 欧美日韩导航| 大陆精大陆国产国语精品| 国产亚洲精aa在线看| 青青草国产精品亚洲专区无| 久久不卡日韩美女| 亚州精品国产| 四虎国产精品永久在线国在线 | 久久精品国产亚洲高清剧情介绍 | 色婷婷成人网| 国产69精品久久| 成人免费一区| 日韩一区精品| 成人看片网站| 99精品国自产在线| 欧美一级做a| 国产亚洲人成a在线v网站| 成人国产精选| 日本亚洲欧洲无免费码在线| 91超碰碰碰碰久久久久久综合| 黑人巨大精品| 女生影院久久| 日韩在线中文| 日韩a**中文字幕| 欧美一级做a| 国产日韩欧美一区在线| 欧美一区网站| 日本女人一区二区三区| 久久中文字幕导航| 国产成人影院| 精品视频在线观看免费观看| 精品国产一区二区三区2021| 精品999日本久久久影院| 高潮久久久久久久久久久久久久| 97久久精品| 天天躁日日躁狠狠躁欧美| 国内精品福利| 国产精品外国| 日韩在线中文| 日韩高清在线不卡| 国产精久久久| 日韩中文一区二区| 99精品一区| 99在线观看免费视频精品观看| 宅男噜噜噜66一区二区 | 天天射综合网视频| 亚洲欧美春色| 婷婷综合六月| 另类欧美日韩国产在线| www.91精品| 国产伦精品一区二区三区在线播放 | 欧洲激情综合| 亚洲欧美日韩精品一区二区| 日本黄色精品| 国产成人福利夜色影视| 亚洲色图欧美| 超碰地址久久| 在线精品小视频| 日本欧美视频| 国产欧美一级| 国产免费av一区二区三区| 国产精品午夜av| 99综合精品| 日韩成人亚洲| 国产欧美一区| 国产99精品| 国产精品久久天天影视| 国产欧美三级| 国产精品调教视频| 国产亚洲永久域名| 日韩精品影院| 国产欧美欧美| 欧美一区二区三区激情视频| 成人激情视频| 亚洲三级网站| 国产精品巨作av| 免费的成人av| 国产精品分类| 日韩精品欧美| av在线私库| 亚洲老司机网| 亚洲午夜av| 精品丝袜在线| 精品国模一区二区三区欧美 | 亚洲一区二区网站| 国模视频一区| 久久超碰99| 先锋资源久久| 国产精品蜜月aⅴ在线| 久久久国产精品入口麻豆| 99热免费精品| 亚久久调教视频| 欧美激情影院| 日本а中文在线天堂| 96视频在线观看欧美| 激情综合久久| 欧美天堂在线| 清纯唯美亚洲综合一区| av资源中文在线| 久久综合影院| 亚洲在线日韩| 成人黄色91| 91久久综合| 国内精品久久久久久久影视麻豆| 日韩精品一卡| 国产一区二区色噜噜| 国产 日韩 欧美 综合 一区| 国产精品成人av| 日韩av不卡在线观看| 亚洲欧美日本视频在线观看| 欧美激情一级片一区二区| 国产主播一区| 亚洲狼人精品一区二区三区| 亚洲性图久久| 三级不卡在线观看| 婷婷综合网站| 一区二区蜜桃| 久久亚洲视频| 日韩av成人高清| 天堂av中文在线观看| 三级欧美日韩| 91精品国产66| 99精品视频在线观看免费播放| 国产精品一区二区免费福利视频| 久久精品国产亚洲5555| av在线播放一区| 国产99亚洲| 日本麻豆一区二区三区视频| 伊人久久亚洲热| 亚洲传媒在线| www.youjizz.com在线| jizz性欧美23| 久久精品国产亚洲aⅴ| 欧美1区2区视频| 国产精品亚洲一区二区在线观看| 免费中文字幕日韩欧美| 精品午夜视频| 欧洲成人一区| 九色精品国产蝌蚪| 精品一区二区三区四区五区| 国产精品久久久久久久久妇女| 美女国产精品久久久| 欧美性www| 国产精品婷婷| 91成人在线精品视频| 亚洲国产mv| 免费高清在线一区| 久久国产精品免费精品3p| 日本不卡一区二区| 欧美激情成人| 1024成人| 亚洲精品推荐| 久久免费影院| 免费观看在线综合| 久久国产欧美| 美女毛片一区二区三区四区最新中文字幕亚洲| 三级亚洲高清视频| 久久男女视频| 欧美男gay| 成人四虎影院| 日韩在线播放一区二区| 精品亚洲自拍| 国产一区二区三区四区五区传媒| 九九精品调教| 视频在线观看91|