加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

FINM8006代寫、代做Python編程設計
FINM8006代寫、代做Python編程設計

時間:2024-10-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



FINM8006 Advanced Investment Assignment
Due 11/10/2024
1 Chinese A-Share Market
Stock market in China is often said to be heavily inffuenced by individual traders.
Size and liquidity therefore are long suspected to play important roles in Chinese
A-share market. Mutual fund industry has been developing in the recent years,
especially after 2016. In this exercise, we will analyze the Chinese market from
2012 to 2022.
1.1 Data Description
The data folder contains two zipped (.gz) csv ffles.
• monthly_returns_cn.csv.gz contains monthly stock and market returns
for stocks on Chinese market from 2010 to 2022.
– stkcd: stock code
– month: date of monthly end date
– ret: stock return
– mktret: market return
– rf: risk free rate
• monthly_characteristics_cn.csv.gz contains ffrm characteristics of
the shares traded each month from the market and earnings announcements.

stkcd: stock code
– priormonth: end of the month date when characteristics information
is known
– market_value: market cap (value) of stock in the month
– ep: EP ratio calculated as earnings divided by market cap
– amihud: average Amihud measure in a month. Amihud measure is a
measure of stock illiquidity, calculated as stock price change divided
by trading volume. The higher the value the lower a stock’s liquidity.
1.2 Your Tasks
11.2.1 Mean Variance
Suppose you inherited an amount of money (M) at the end of year 2020 and want
to invest it in a basket of stocks and risk free asset at the beginning of 2021.
stkcds of the stocks in your basket are ['600519', '002594', '002415',
'000333'] and the risk free rate is known at the beginning of 2021. You have
CRRA utility function of risk aversion    = 3. You estimate the return characteristics
 using data in the last 3 years prior to 2021.
1. What is your optimal share of M to invest in the stock basket?
2. What is the optimal share of M to invest in each stock if you decide to do
mean-variance investing?
3. What are the returns you expected to get and you will actually get (from
M, consider only the stock returns) in January 2021?
4. If you compose your stocks in the basket based on their relative market
caps at the end of 2020, what return (from M, consider only the stock
returns) in January 2021 will you get?
1.2.2 CAPM BETA
For each stock and month starting from January 2012, use the prior 24 month
to estimate CAPM   . You will require a ffrm-month to have at least 12 months
of prior data to estimate, otherwise the ffrm-month will be dropped from the
portfolio. From now on, your data will be ffrms with legitimate beta and other
characteristics information.
For each month starting from 2012, form 10 portfolios according to their CAPM
  , then plot the average realized monthly excess return against the average   
for the 10 portfolios. Add the CAPM line also to your graph. Please comment
on the graph you produce, what kind of the stocks are likely to be overvalued
or undervalued.
1.2.3 Size and EP Ratio
For each month starting from 2012, form 25 (5x5) portfolios by sorting stocks
according to size (proxied by market value) and EP ratio. Stock characteristics
in a month is its characteristics in the prior month. Calculate the value-weighted
returns and betas. Produce a within-size plot and a within-PE plot for the 25
portfolios by plotting mean excess return against CAPM as in the lecture notes.
Comment on your graphs.
1.2.3.1 Size and EP factors
You will divide your stocks into 6 (2X3) portfolios according to size and EP.
Returns in the portfolios are value-weighted. Then you will form your SMB
(size) factor by longing the equally-weighted portfolios of small stock portfolios
2and shorting the equally-weighted portfolios of big stock portfolios, form your
HML (EP) factor by longing the equally-weighted portfolios of high EP stock
portfolios and shorting the equally-weighted portfolios of low EP stock portfolios.
Plot the cumulative factor returns along with the cumulative market excess
return.
Run multi-factor models of market excess return, SMB and HML for each of the
25 portfolios you formed earlier, and get the factor loading. Produce within-size
and with-EP plots by plotting average portfolio excess returns against average
model predicted excess returns. You get model predicted excess returns from
factor loading and mean factor returns. Has the multi-factor loading improved
the model prediction?
1.2.4 Liquidity Premium
Is there liquidity premium and What is its dynamics? Let’s examine. In addition
 to the 2X3 sorting, we also sort independently into 5 portfolios according
to amihud. That is, we sort stockings into 2X3X5 portfolios of size, EP and
liquidity. Again, portfolio returns are value weighted. Finally, we form liquidity
 premium by longing the equally-weighted portfolios of high illiquidity
stock portfolios and shorting the equally-weighted portfolios of low illiquidity
stock portfolios. Calculate the time-series of liquidity premium, and plot the
cumulative returns of the premium. Comment on the graph you get.
1.3 Python Notes
You can use pandas to read zipped csv ffles. Notice that stkcd is a str, and
month is a date, they need to be speciffed in reading to have the correct data
type, such as the following:
monthly_returns = pd.read_csv('monthly_returns_cn.csv.gz',
parse_dates=['month'], dtype={'stkcd':'str'})
You will need statsmodels for regression. For rolling regression, you can use
a for loop as the backtesting workshop, or use RollingOLS in statsmodels.
To calculate things by group, the groupby method of pandas will be useful.
You can use apply following groupby to get results in a new data frame, or use
transform to add the results to the existing dataframe. Please see lecture notes
and pandas documentation online for details.
qcut method of pandas is handy for ffnding the cutoff and sorting dataframe
into groups. The following lambda function, when applied to x, put 10 group
labels, size0…size9 according to x.
lambda x: pd.qcut(x, 10, labels=['size'+str(x) for x in range(10)], retbins=False)
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:代寫SCIE1000、代做Python程序設計
  • 下一篇:CS439編程代寫、代做Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本美女久久| 精品国产一区二区三区av片 | 成人av国产| 在线观看视频免费一区二区三区| 亚洲精品无吗| 亚洲精品aa| 免费精品视频| 麻豆视频一区| 亚洲精品小区久久久久久| 国产在视频一区二区三区吞精| 日韩精品一级| 亚洲美女91| 日韩啪啪电影网| 国产精品日本| 给我免费播放日韩视频| www.久久99| 久久不卡日韩美女| av在线最新| 日韩视频一区| 青青一区二区| 亚洲成人五区| 亚洲网站免费| 欧美另类激情| 日韩激情图片| 91久久夜色精品国产按摩| 一区久久精品| 欧美中文一区二区| 精品视频99| 少妇精品久久久| 亚洲色图国产| 日韩成人在线一区| 日韩理论电影大全| 欧美激情偷拍自拍| 六月丁香综合| 野花国产精品入口| 成人av二区| 激情欧美一区| 欧美偷拍综合| 天堂资源在线亚洲| 四虎影视精品| 国产精品毛片久久久| 日本精品国产| 亚洲综合福利| 国产一卡不卡| 国产精品视频一区二区三区| 亚洲三级网站| 日本网站在线观看一区二区三区 | 激情六月综合| 成人精品亚洲| 嫩草国产精品入口| 久久久久国产精品一区二区| 91国内精品| 五月综合久久| 日韩电影在线观看一区| 天美av一区二区三区久久| 国产午夜一区| 亚洲小说图片| 秋霞一区二区| 一区二区三区亚洲变态调教大结局| 国产一区二区三区国产精品| 日韩在线中文| 91大神在线观看线路一区| 99热播精品免费| 亚洲1234区| 成人在线不卡| 一区二区国产精品| 日本视频一区二区三区| 捆绑调教美女网站视频一区| 亚洲国产激情| 国产视频一区二区在线播放| 高清不卡一区| 日韩激情一区二区| 免费看一区二区三区| 精品国产乱子伦一区二区| 99久久久国产精品美女| 欧美不卡在线| 免费在线看一区| 日产精品一区| 四虎国产精品免费久久| 乱一区二区av| 久久不见久久见免费视频7| 日韩电影一区二区三区| 国产精品任我爽爆在线播放| 激情欧美国产欧美| 国产免费成人| 婷婷午夜社区一区| 麻豆成人av在线| 日韩电影免费一区| 色吊丝一区二区| 99视频精品免费观看| 91综合网人人| 久久激五月天综合精品| 国产一区二区三区四区大秀| 91成人福利| 亚洲大全视频| 中文字幕一区久| 亚洲精品乱码| 一区二区三区视频免费视频观看网站| 亚洲一区二区三区| 狠狠久久伊人| 艳女tv在线观看国产一区| yellow在线观看网址| 日韩精品久久理论片| 日韩精品91亚洲二区在线观看| 国产一区二区三区站长工具| 伊人久久影院| 国产一级一区二区| 国产成+人+综合+亚洲欧美| 欧美特黄不卡| 久久久亚洲一区| 色88久久久久高潮综合影院| 一区二区精品| 香蕉成人app| 中文国产一区| 激情久久99| 91午夜精品| 噜噜噜在线观看免费视频日韩| 久久大逼视频| 狂野欧美性猛交xxxx| 日本一区精品视频| 亚洲综合国产激情另类一区| 欧美精品日日操| 亚洲人亚洲人色久| 91久久夜色精品国产九色| 成人福利一区二区| 美女精品久久| 国产精品99一区二区三区| 麻豆一区二区三| 色吊丝一区二区| 日韩一区二区在线免费| 少妇一区二区视频| 亚洲男女自偷自拍| 日本欧美一区二区在线观看| 精品产国自在拍| 天堂av在线网| 偷拍亚洲精品| 可以免费看不卡的av网站| 亚洲色图国产| 日韩五码在线| 欧美精品1区| 伊人久久大香线蕉av超碰演员| 日产精品一区二区| 亚洲另类视频| 欧洲三级视频| 日本aⅴ免费视频一区二区三区| 国产精品免费不| 午夜欧美在线| 麻豆91在线观看| 五月天久久777| 亚洲精品人人| 亚洲视频1区| 一区二区三区中文| 中文一区二区| 国产亚洲第一伦理第一区| 麻豆91精品| 亚洲人成网站77777在线观看| 麻豆成人入口| 亚洲日本在线观看视频| 久久久蜜桃一区二区人| 日韩欧乱色一区二区三区在线| 国产精品2区| 性欧美长视频| 国产成人精品三级高清久久91| 亚洲v在线看| 免费亚洲网站| 日韩视频中文| 亚州精品视频| 国产精品久久久久久久久妇女| 欧美激情不卡| 自拍日韩欧美| 国产欧美欧美| 日本蜜桃在线观看视频| 精品国产精品国产偷麻豆| 日韩免费大片| 亚洲一区二区三区四区五区午夜 | 99久久精品网| 另类中文字幕网| 亚洲免费中文| 欧美日韩网站| 国产日韩欧美一区在线 | 成人中文视频| 国产欧美一级| 老牛国产精品一区的观看方式| 一区二区三区成人精品| 婷婷综合社区| 日本在线成人| 日韩黄色免费电影| 久久亚洲色图| 色婷婷精品视频| 一区二区三区国产精华| 日韩中文字幕区一区有砖一区| 亚洲美女91| 日韩在线播放一区二区| 精品在线网站观看| 91精品国产色综合久久不卡粉嫩| 99久久影视| 国产精品视频一区视频二区 | 大桥未久在线视频| 色天天色综合| 国产一区二区三区四区五区传媒|