加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久成人网| 国产69精品久久| 欧美三级午夜理伦三级中文幕| avav成人| 久久高清一区| 精品久久成人| 国语对白精品一区二区| 伊人成综合网站| 香港欧美日韩三级黄色一级电影网站| 亚洲天堂日韩在线| 另类的小说在线视频另类成人小视频在线| 国产一级久久| 久久激情电影| 日韩精品成人在线观看| 亚洲国产日本| 福利一区在线| 亚洲欧美小说色综合小说一区| 激情欧美亚洲| 欧美顶级毛片在线播放| 国产一区二区欧美| 捆绑调教一区二区三区| 日韩av福利| 手机在线一区二区三区| 亚洲激情中文| 欧美阿v一级看视频| 欧美偷窥清纯综合图区| 精品视频成人| 日本一道高清一区二区三区| 亚洲网色网站| 一区二区三区四区五区精品视频| 欧洲一区精品| 日韩综合在线| 久久最新视频| 狠狠88综合久久久久综合网| 亚洲性人人天天夜夜摸| 欧美综合精品| 色婷婷综合久久久久久| av日韩精品| 视频精品一区| 日韩电影在线免费| 日韩成人一级大片| 西野翔中文久久精品国产| 欧美日韩专区| 欧美国产先锋| 国产精品一区二区三区av| 亚洲精品国产日韩| 国产日韩1区| 老司机免费视频一区二区三区| 嫩草伊人久久精品少妇av杨幂| 欧美不卡高清一区二区三区| 日韩高清成人| 国产精品美女午夜爽爽| 欧美天堂在线| 国产69精品久久久久9999人| 一本大道色婷婷在线| 亚洲伦乱视频| 日韩中文影院| 久久精品国产一区二区| 日韩精品国产精品| 亚洲国产黄色| 欧美电影院免费观看| 偷拍亚洲精品| 伊人精品综合| 999精品在线| 国产综合亚洲精品一区二| 自拍偷拍欧美专区| 亚洲少妇在线| 伊人成综合网站| 久久精品国产99国产精品| 日韩精品视频网| 欧美电影在线观看一区| 日韩高清在线观看一区二区| 精品成人自拍视频| 自拍偷拍欧美| 蜜桃av一区二区三区| 天堂av在线网| 日本伊人色综合网| 国产精品视频一区二区三区综合| 午夜先锋成人动漫在线| 成人在线视频免费观看| 羞羞色午夜精品一区二区三区| 亚洲激情成人| 都市激情亚洲一区| 麻豆91在线播放免费| 亚洲精品**不卡在线播he| 成人看片黄a免费看视频| 免费毛片在线不卡| 色综合咪咪久久网| 欧美一区免费| 久久综合色占| 久久成人福利| 久久国产精品99国产| 成人福利一区二区| 国产精品美女久久久久久不卡 | 欧美日韩天堂| 怡红院精品视频在线观看极品| 岛国av在线网站| 日本91福利区| 欧美私人啪啪vps| 国产亚洲福利| 99精品欧美| 在线视频亚洲欧美中文| 午夜欧美在线| 女海盗2成人h版中文字幕| 99精品国产九九国产精品| 亚洲精选av| 亚洲专区一区| 久久这里只有| 亚洲精品不卡在线观看| 国产亚洲在线| 久久精品国产99| 超碰cao国产精品一区二区| 伊人久久大香线蕉av超碰演员| 日本成人在线网站| 亚洲精品亚洲人成在线| 羞羞答答成人影院www| 精品人人视频| 日韩激情啪啪| 美女久久一区| 麻豆成人综合网| 久久九九免费| 伊人久久高清| 久久丁香四色| 噜噜噜在线观看免费视频日韩| 日本少妇一区二区| 欧美a大片欧美片| 亚洲综合在线电影| 日韩精品一区二区三区中文字幕| 国产一级一区二区| 在线观看视频日韩| 国产综合亚洲精品一区二| 韩国三级一区| 国产一区二区三区不卡av| 日本欧美肥老太交大片| 99精品视频在线免费播放 | 日韩伦理一区二区三区| 亚洲欧美成人| 中文字幕日本一区| **女人18毛片一区二区| 日韩一区二区三免费高清在线观看| 亚洲日本va| 综合久久2023| 国产精品一区二区三区美女| 不卡av播放| 欧美三级第一页| 成人va天堂| 精品欠久久久中文字幕加勒比| 午夜不卡影院| 国产精品对白| 懂色aⅴ精品一区二区三区| 欧美成人专区| 国产成人亚洲一区二区三区| 精品免费视频| 日日夜夜精品免费视频| 婷婷伊人综合| www 久久久| 蜜桃久久av| 日本成人精品| av在线一区不卡| 日韩精品水蜜桃| 日日摸夜夜添夜夜添亚洲女人| 亚洲精品中文字幕乱码| 96sao精品免费视频观看| 免费高清在线一区| 欧美视频亚洲视频| 四虎在线精品| 黄色av日韩| 日韩av网址大全| 日本国产亚洲| 在线视频观看日韩| 伊人久久大香伊蕉在人线观看热v| 国产亚洲欧洲| 51亚洲精品| 另类小说综合欧美亚洲| 美女国产精品| 一本色道69色精品综合久久| 国产成人免费| 夜夜嗨av一区二区三区网站四季av| 啪啪亚洲精品| 成人午夜毛片| 老司机午夜精品视频在线观看| 日韩在线视频一区二区三区| ww久久综合久中文字幕| 亚洲激情偷拍| 精品视频在线观看网站| 久久精品伊人| 国产在线精彩视频| 欧美福利视频| 日韩在线成人| 麻豆精品视频在线观看| 四季av一区二区凹凸精品| 老牛国内精品亚洲成av人片| 亚洲资源在线| 成人免费网站www网站高清 | 91久久黄色| 精品久久成人| 国际精品欧美精品| 美女视频黄 久久| 日本蜜桃在线观看视频| 伊人影院久久|