加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品视频成人| 亚洲午夜一级| 91精品国产66| 欧美色婷婷久久99精品红桃| 久久精品资源| 9国产精品视频| 久久综合给合| 999国产精品亚洲77777| 精品欧美久久| 日韩欧美国产大片| 亚洲精品国产嫩草在线观看| japanese色系久久精品| 国产在视频一区二区三区吞精| 激情国产一区| 国产最新精品| 国产精品.xx视频.xxtv| 天天色综合色| 日韩三级视频| 肉色丝袜一区二区| 日韩中文字幕亚洲一区二区va在线 | 91亚洲无吗| 日日骚欧美日韩| 91综合在线| 欧美日韩激情在线一区二区三区| 国产aⅴ精品一区二区三区久久| 免费观看亚洲| 国产亚洲在线| 同性恋视频一区| 日韩精品电影在线| 97视频热人人精品免费| 在线综合欧美| 雨宫琴音一区二区在线| 99久久婷婷国产综合精品电影√| 国产麻豆精品久久| 日韩毛片网站| 欧美激情777| 亚洲精品1234| 久久人人88| 91精品国产乱码久久久竹菊| 成人精品在线| 久久精品免费| 日本精品另类| 中文字幕色婷婷在线视频| 日韩一级精品| 欧美一区二区麻豆红桃视频| 亚洲综合影院| 久久97视频| 亚洲成人高清| 美女福利一区二区| 石原莉奈在线亚洲三区| 艳女tv在线观看国产一区| 日本午夜精品| 国产不卡一区| 中文字幕免费精品| 青青草国产精品亚洲专区无| 国产精品人人爽人人做我的可爱| 国模一区二区三区| 日韩精品影视| 青青一区二区| 日韩电影在线免费看| 欧美视频三区| 亚洲精品欧美| 老色鬼精品视频在线观看播放| 久久天堂影院| 99精品免费网| 美女视频一区在线观看| 日韩精品一区第一页| 99视频在线精品国自产拍免费观看| 亚洲无线一线二线三线区别av| 亚洲最大在线| 日韩在线你懂的| 亚洲免费福利一区| 麻豆一区二区99久久久久| 婷婷久久综合九色综合99蜜桃| 蜜桃成人精品| 五月激情久久| 国产激情欧美| 亚洲视频二区| 六月丁香综合在线视频| 日本免费在线视频不卡一不卡二| 日日摸夜夜添夜夜添精品视频| 日日摸夜夜添夜夜添亚洲女人| 欧美在线二区| 久久精品国产在热久久| 国产一区二区三区的电影 | 亚洲小说欧美另类婷婷| 欧美久久综合网| 亚洲一区二区成人| 日产精品一区二区| 欧美日韩国产网站| 中文无码久久精品| 伊人www22综合色| 激情久久久久久久| 视频一区二区国产| 国产一区影院| 亚洲第一福利社区| 久久精品九九| 免费欧美在线视频| 亚洲精品成人一区| 久久夜色电影| 黑色丝袜福利片av久久| 伊人久久久大香线蕉综合直播| 91亚洲国产高清| 日韩高清中文字幕一区| 日韩一区二区三区色| 激情五月综合| 欧美片第1页| 中文字幕乱码亚洲无线精品一区| 一区二区三区自拍视频| 91精品二区| 国产69精品久久久久按摩| 国产欧美一区| 婷婷激情综合| 少妇精品视频在线观看| 精品国模一区二区三区欧美| 99视频精品全国免费| 久草在线资源站手机版| 一区二区在线影院| 中文字幕av一区二区三区人| 免费精品视频在线| 亚洲精品人人| 久久精品国产www456c0m| 在线一区av| 五月国产精品| 国产免费成人| 日本成人在线一区| 欧美色图麻豆| av中文资源在线资源免费观看| 亚洲国产精品第一区二区三区| 激情小说一区| 蜜臀国产一区| 日韩avvvv在线播放| 夜夜嗨一区二区三区| 麻豆国产精品777777在线| 精品久久视频| 日韩伦理视频| 亚洲国产aⅴ精品一区二区| 免费不卡在线视频| 亚洲一区av| 夜夜嗨一区二区三区| 国产精品chinese| 波多野结衣在线播放一区| 久久精品国产精品亚洲精品| 老牛精品亚洲成av人片| 欧美精品高清| 精品久久影院| 久久亚洲精品中文字幕| 国产精品nxnn| 国产精品蜜月aⅴ在线| 国产精品白浆| 四虎精品一区二区免费| 成人毛片在线| 精品久久99| 亚洲二区精品| 综合天堂av久久久久久久| 91成人精品| 国产激情一区| 爽爽淫人综合网网站| 亚洲大片精品免费| 麻豆视频在线看| 国内毛片久久| 欧美成人免费全部网站| 激情欧美国产欧美| 久久中文资源| 欧美mv日韩| www.亚洲一二| 免费视频一区| 国产一区导航| 亚洲综合图色| av成人在线播放| 欧美日韩在线二区| 综合久久婷婷| 国产精品久久久久久久久久10秀| 亚洲开心激情| 日韩国产高清影视| 天堂av在线一区| 精品国产一区二区三区av片| 日韩国产精品久久久久久亚洲| 99在线精品免费视频九九视| 久久99免费视频| 自拍偷自拍亚洲精品被多人伦好爽 | 国内视频在线精品| 亚洲人成久久| 色综合天天爱| 99视频精品全部免费在线视频| 亚洲区综合中文字幕日日| 色88久久久久高潮综合影院| 欧美有码在线| 国产精久久一区二区| av中文在线资源库| 国产精品av一区二区| 国产一区二区三区天码| 欧洲亚洲精品| 一本色道久久综合亚洲精品不| 亚洲日本va| 综合在线视频| 亚洲精品成a人ⅴ香蕉片| 免费欧美日韩| 亚洲a一区二区三区| 国产剧情在线观看一区|