加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品国产91| 国产一区二区三区| 成人福利一区| 亚洲毛片一区| 欧美成人黑人| 亚洲精品123区| 日日天天久久| 偷拍自拍一区| 日本网站在线观看一区二区三区 | 极品美女一区二区三区| 亚洲深夜福利在线观看| 日韩国产欧美在线播放| 美女福利一区二区三区| 国产婷婷精品| 亚洲香蕉网站| 黑色丝袜福利片av久久| 国产一区2区| 日本91福利区| 亚洲涩涩在线| 国产h片在线观看| 日韩一级免费| 国产一区观看| 久久久久.com| 北条麻妃在线一区二区免费播放 | 日本黄色精品| 中文亚洲免费| 伊人成综合网| 国产一区亚洲| 视频小说一区二区| 欧美精品国产白浆久久久久| 日韩二区三区在线观看| 9999精品| 91国产一区| 综合国产在线| 亚洲精品韩国| 亚洲国产精品第一区二区三区 | 亚洲欧美日韩国产| 91九色精品国产一区二区| 久久久蜜桃一区二区人| 国产一区调教| 色老板在线视频一区二区| 美女av一区| 久久激情综合| 激情偷拍久久| 制服丝袜日韩| 亚洲欧美偷拍自拍| 亚洲激情久久| 国产精品老牛| 噜噜噜躁狠狠躁狠狠精品视频 | 成人mm视频在线观看| 欧美日韩视频免费观看| 妞干网免费在线视频| 天天综合网天天| 亚洲成a人片777777久久| 成人午夜毛片| 一区二区三区精品视频在线观看| 久久国产麻豆精品| 青草国产精品久久久久久| 亚洲日本国产| 国模精品一区| 亚洲免费一区三区| 久久久夜夜夜| 希岛爱理av一区二区三区| 日韩一区二区久久| 麻豆91精品| а√天堂中文资源在线bt| 日本欧美一区| 麻豆91小视频| 美女毛片一区二区三区四区最新中文字幕亚洲| 不卡的国产精品| 久久久精品区| 久久精品国产亚洲夜色av网站| 午夜久久免费观看| 天堂av在线一区| 偷拍精品精品一区二区三区| 久久精品72免费观看| 日本va欧美va精品| 久久精品一级| 久久人人99| 久久国产99| 亚洲成人1区| 国产精品免费精品自在线观看| 日韩美脚连裤袜丝袜在线| 精品色999| 日韩一级精品| 色综合一本到久久亚洲91| 日本视频在线一区| 日韩mv欧美mv国产网站| 在线观看欧美理论a影院| 国产亚洲精品v| 欧美gv在线观看| 中文字幕一区二区三区在线视频| 日韩极品在线| 成人a'v在线播放| 欧美一级鲁丝片| 综合天堂久久久久久久| 91精品国产自产精品男人的天堂| 免费视频国产一区| 极品av在线| 一区二区蜜桃| 久久精品免费一区二区三区 | 91精品在线观看国产| 丝袜脚交一区二区| 一区二区三区四区五区精品视频| 日韩黄色网络| 午夜精品婷婷| 久久91视频| 午夜久久av| 西西人体一区二区| 日韩精品亚洲一区| 亚洲精品观看| 免费在线看成人av| 亚洲国产精品第一区二区三区| 亚洲一二av| 国产精品成人一区二区不卡| 青青草国产成人99久久| 青青草91久久久久久久久| 日本一区二区在线看| 欧美激情一区| 亚洲午夜av| 色999久久久精品人人澡69| 日韩精品一区二区三区中文 | 婷婷亚洲图片| 色综合视频一区二区三区44| 麻豆久久一区| 日韩1区2区| 色综合中文网| 久久夜色精品| 95精品视频| 99在线热播精品免费99热| 国产成人精品一区二区三区视频| 66精品视频在线观看| 欧美oldwomenvideos| 欧美久久一区二区三区| 女人色偷偷aa久久天堂| 国产日韩欧美一区二区三区在线观看 | 精品极品在线| 国产精品白浆| 国产精成人品2018| 欧洲亚洲一区二区三区| av在线日韩| 久久久久欧美精品| 男人亚洲天堂| 国产主播一区| 亚洲国产一区二区三区a毛片| 国产综合精品| 日韩高清在线观看| 午夜电影亚洲| 欧美电影在线观看一区| 日韩精品一二区| 视频一区中文字幕精品| 日韩伦理精品| 成人中文字幕视频| 久久av日韩| 91精品二区| 91麻豆精品| 日韩www.| 精品久久久久久久| 一区二区三区国产在线| 欧美在线资源| 亚洲最好看的视频| 中文字幕在线高清| 久久久久国产| 你懂的国产精品| 视频一区在线视频| 99ri日韩精品视频| 久久精品国产精品亚洲精品| 欧美精品九九| 天堂av一区二区三区在线播放| 久久青草伊人| 1000部精品久久久久久久久| 欧美区一区二| 欧美bbbbb| 精品丝袜久久| 伊人久久精品| 亚洲欧洲高清| 在线一级成人| 日韩a级大片| 久久精品97| 免费欧美在线视频| 精品久久精品| 国产成人精品免费视| 免费一二一二在线视频| 午夜久久tv| 草莓视频一区二区三区| 日韩高清一级片| 色97色成人| 自拍欧美一区| 久久69av| 在线精品亚洲| 免费一二一二在线视频| 在线成人直播| 高清欧美性猛交xxxx黑人猛| 一区二区三区午夜视频| 日韩欧美国产精品综合嫩v| 亚洲高清影视| 久久精品国产亚洲5555| 国产欧美日韩| 老鸭窝一区二区久久精品| 色97色成人|