加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP0035代做、代寫python程序語言
COMP0035代做、代寫python程序語言

時(shí)間:2024-11-13  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



COMP0035 Coursework 01 2024 Coursework specification
1. Table of contents
Introduction
Coursework specification
Getting started
General requirements and constraints
Section 1: Data exploration and preparation
Section 2: Database design and creation
Section 3: Tools
Section 4: References
Submission
Marking
Module learning outcomes
Mark allocation
Grading criteria
Appendices
Code quality
Code that does not fully function
Guidance on Moodle
Version: 1. 28/09/24
2. Introduction
The aim of the combined coursework in this module is for you to select and apply some of the relevant
software development and data science techniques that are used in a typical project lifecycle.
Coursework 1 focuses on data preparation and database design.
Coursework 2 continues from coursework 1, focusing on requirements, application design and testing.
This document specifies coursework 1 which is worth 40% of the assessment marks available for the
module. This is an individual coursework.
You will submit a written report; and a repository of code files that combined meet the requirements
detailed in this specification.
Aim to make progress each week of first five weeks of the module, in line with module’s teaching activities.
3. Coursework specification
3.1. Getting started
1. Select a dataset using the ‘group’ selection task in Moodle Week 1 (https://moodle.ucl.ac.uk/mod/
choicegroup/view.php?id=6089982). Each ‘group’ option is associated with a data set. ‘Group
selection’ is a Moodle term for the type of task, the coursework is individual.
2. Accept a GitHub classroom assignment. This creates the repository. Instructions are also given in
Tutorial 1. 
1. Login to GitHub.com.
2. Click on the GitHub classroom link (https://classroom.github.com/a/zqVIaThf)
3. Accept the assignment.
4. If prompted, accept to join the comp0035-ucl organisation.
Page 1 of 10
3. Download the dataset for your group choice and add it to your repository. Use the links in Moodle
(Resources > Datasets). For files > 25MB use GitHub large file storage (https://docs.github.com/
en/repositories/working-with-files/managing-large-files/about-git-large-file-storage).
3.2. General requirements and constraints
• Compile all written work into a single report in either PDF or Markdown format. Name the
document coursework1.
• The report supports the code and techniques used in the coursework. It is not an essay, be succinct.
There are no word limits.
• Demonstrate regular use of source code control using GitHub. Create the repository using the
GitHub classroom assignment. Keep the repository private. Keep the repository in the ucl comp0035 organisation.
• You must use the data set allocated to you on Moodle.
• This is an individual coursework. Do not collude with other students using the same data set.
• Use of code AI tools is permitted when writing code. UCL recommends using Microsoft Copilot
(https://liveuclac.sharepoint.com/sites/Office365/SitePages/Bing-Enterprise-Chat.aspx) using your
UCL credentials. This must be stated in the ‘References’ section.
• Use relevant techniques from the course, or from data science and/or software engineering
processes. Provide references for techniques not included in the course material.
• Diagrams can be hand-drawn and scanned. Using software to draw them does not increase marks.
3.3. Section 1: Data exploration and preparation
The purpose of this section is:
• to use python pandas to describe the data set structure and content; and as a result demonstrate
that you understand the data set.
• to use python pandas prepare the data for later use in developing applications. The data you
prepare will be used in COMP0034 coursework to create charts in a dashboard app.
• to demonstrate that you can write code that is reusable and understood by other developers.
• to demonstrate that you can apply relevant software engineering and data science techniques.
Code quality is also assessed.
Use only Python and pandas. matplotlib may be used where pandas DataFrame.plot() (https://
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.html) is not sufficient.
Create charts where they support your exploration and preparation; but do not focus on the visual
aesthetic as this is not assessed.
You may need to prepare the data in order to complete the exploration and hence your code may not
neatly split between 1.1 and 1.2. This is OK, the code structure does not need to exactly match the report
structure.
3.3.1. Section 1.1 Data exploration
1. Code: Write python code to explore and describe the data structure and content. Including, but
not limited to, size, attributes and their data types, statistics, distribution of the data, etc.
Consider potential data quality issues.
2. Report: Describe the results of your exploration of the data. Do not include the code in the report.
3.3.2. Section 1.2 Data preparation
1. Report: Briefly describe a target audience and state at least 3 questions that they might be
interested to explore using the data. This defines the purpose for which you will prepare the data.
Page 2 of 10
2. Code: Write python code to prepare the data such that it can be used to try to answer the
questions for the audience described in step 1. Aim to have sufficient data, and avoid unnecessary
data. The prepared data should be in a format that can be read into one or more pandas
dataframes from a file (.csv or .xlsx). If relevant, address any data quality issues identified in
section 1.1.
3. Report: Explain how you ensured the data is relevant for the purpose.
4. Include the original and prepared versions of your data set files in your repository.
3.4. Section 2: Database design and creation
The purpose of this section is:
• to demonstrate that you understand the structure of a relational database and the principles of
normalisation by designing an appropriate database and drawing this as an entity relationship
diagram (ERD).
• to demonstrate that you can write Python code to create an SQLite database based on the ERD.
The database you create can be used in COMP0034 coursework in a data driven web application.
3.4.1. Section 2.1: Database design
Design a relational database that can store the data (based on either the prepared or the raw data set,
your choice). Consider normalisation.
Document the design as an Entity Relationship Diagram (ERD) that includes the following details as a
minimum:
• table(s)
• attributes in each table
• data type of each attribute
• primary key attribute for each table
• foreign key attribute(s) if relevant
• relationship lines between tables
Include the ERD in your report. An explanation is not required, though you may discuss your
normalisation if relevant.
3.4.2. Section 2.2: Database code
Write python code that:
• creates a database structure based on the ERD for an SQLite database file.
• takes the data from the dataset file and saves it to the SQLite database file. Note: do not create a
database that requires a server such as MySQL or PostgresSQL.
The quality of the code is assessed.
Use relevant Python packages, i.e. pandas and sqlite3.
3.5. Section 3: Tools
The purpose of this section is to demonstrate appropriate and effective use of relevant software engineering
tools.
Page 3 of 10
3.5.1. Section 3.1 Environment management
Provide relevant files and instructions that allow the marker to set up and run your code in a Python
virtual environment. They will use pip and setuptools with the commands:
pip install -r requirements.txt
pip install -e .
As a minimum, edit the files that were provided in the starter code of the repository:
• requirements.txt: list the packages used in your code
• pyproject.toml: provide basic project details and code package location
• README.md: provide instructions to install and run your code for the data preparation and the
database creation
3.5.2. Section 3.2: Source code control
Add the URL for your repository to the report.
Make regular use of source code control.
3.5.3. Section 3.3: Linting
Use a Python linter to demonstrate how your code meets Python style standards such as PEP8, PEP257.
For example:
• state which Python linter you used.
• provide evidence of the results of running the linter.
• if issues are reported by the linter, address these and then run the linter again and show the results.
• if any issue cannot be addressed, explain why not.
3.6. Section 4: References
Include code references in comments in the code files close to where it is used.
Include all other references, if used, in the report.
3.6.1. Section 4.1 Reference use of AI
State either that you used AI, or state that you did not.
If you used AI, include the details stated in the UCL guidance (https://library-guides.ucl.ac.uk/
referencing-plagiarism/acknowledging-AI#s-lg-box-wrapper-19164308).
3.6.2. Section 4.1 Dataset attribution
Comply with any license condition required for your data set (given in the data set link in Moodle >
Resources > Data sets).
Each license is different and tells you what has to be cited; e.g. see open government licence v3 (https://
www.nationalarchives.gov.uk/doc/open-government-licence/version/3/). Typically, but not always,
‘attribution’ is required: i.e. include a statement listing who owns the data and its location.
Page 4 of 10
4. Submission
Refer to Moodle > Assessment for the deadline date and time.
Submit your work on Moodle in the assignment submission. The submission states the upload format:
.zip for the code (and report if in markdown) plus .pdf for the report (if not in markdown).
GitHub is not an acceptable alternative for submission, though its facility to download the code files as
zip may be useful to you.
Make sure all files are in the submission. URLs linking to external files cannot be marked as they could be
changed after the submission time. The only exception is where the original data files are too large to
upload to Moodle - in this exceptional situation list url(s) to the data files in your report or the 
README.md instead.
Do not include your .venv folder in the zip file, this creates unnecessarily large zip files.
Table: Submission checklist
Section Report Code files
1. Data
exploration
and
preparation
Description and
explanation.
Python code to explore/describe the data.
Python code to prepare the data.
Original data set
Prepared dataset
2.
Database
design and
creation
Entity
Relationship
Diagram (ERD).
Python code to create the database.
SQLite database file.
3. Tools
Source code
control: URL to
GitHub repository
Linting evidence.
Environment management: requirements.txt, 
pyproject.toml, README.md
4.
References
Statement of AI
use.
Data set
attribution.
Other references if
used.
Include code references within the code files.
5. Marking
5.1. Module learning outcomes
The module’s published learning outcomes that are assessed in this coursework are indicated in the table.
Page 5 of 10
Learning outcome Coursework
1 ?
1. Describe how software development methodologies can be used to manage the
software development process and select and apply an appropriate methodology for
a given project.
2. Select and apply techniques for capturing and modelling requirements.
3. Select and apply techniques for modelling an application; and model an
application using these.
Yes -
database
4. Select the aspects of a software application can be modelled with the Unified
Modelling Language (UML); and use UML to model different views of an
application.
ERD (not
UML)
5. Model the design for a database. Yes
6. Describe testing and recommend an appropriate approach to testing for a given
project.
7. Recognise the challenges of working in a team and organise themselves and their
group to deliver a complex project.
8. Recognise the ethical implications of using data in the context of this course and
be aware of their responsibilities to comply with relevant UCL and UK legislation. Yes
9. Work in a group to apply the skills and knowledge gained in the course to: a)
produce a coherent and cohesive specification for an application; and b) select,
install, configure and use a set of open-source tools and use these to support the
software development cycle for the application.
Yes, part (b)
The published learning outcomes are being revised. In particular:
Data preparation and visualisation are core to the module content yet missing from the published
learning outcomes.
Following feedback from previous students, the coursework is now individual. Learning outcome 7 is
not addressed; and learning outcome 9 needs to be re-worded.
5.2. Mark allocation
You are expected to spend 18 hours on coursework 1 (45 * 40%).
The weighting of each section is shown with an indication of the expected hours of effort required.
Section Weighting Effort (hours)
Data preparation and understanding 45% 8
Database design and creation 35% 6
Tools 20% 3
5.3. Grading criteria
The coursework is assessed according to the standards set in the standard UCL Computer Science grading
criteria ( see copy on Moodle in the Assessment section). The criteria most relevant to this assessment are
1, 2, 4 and 5.
The following tables give the standard UCL CS criteria, and indicators specific to this coursework. The
coursework is open-ended and allows for different solutions; it is not possible to describe every aspect that
could be considered.
• 
• 
Page 6 of 10
The descriptors typically focus on quality and standard of the response, rather than quantity. If you are
going to do something more (quantity), then you are advised to focus on demonstrating something that
has not already been evidenced in your work.
5.3.1. Generic CS Descriptors
Grade
band Generic CS Descriptor
Distinction
**+
Exceptional response with a convincing, sophisticated argument with precise
conclusions.
Exceptional grasp of complexities and significance of issues.
Exceptional thought and awareness of relevant issues. Sophisticated sense of
conceptual framework in context.
Exceptional solution and advanced algorithm/technical design.
Distinction
70-89
A distinctive response that develops a clear argument and sensible conclusions, with
evidence of nuance.
Thorough grasp of issues; some sophisticated insights.
Concepts deftly defined and used with some sense of theoretical context.
Excellent algorithmic solution, novel and creative approach.
Merit
60-69
A sound response with a reasonable argument and straightforward conclusions, logical
conclusions.
Sound understanding of issues, with insights into broader implications.
Good solution, skilled use of concepts, mostly correct and only minor faults.
High pass
50-59
A reasonable response with a limited sense of argument and partial conclusions.
Reasonable grasp of the issues and their broader implications.
Reasonable reproduction of ideas from taught materials. Rudimentary definition and
use of concepts.
Reasonable solution, using basic required concepts, several flaws in implementation.
Low pass
40-49
An indirect response to the task set, towards a relevant argument and conclusions.
Rudimentary, intermittent grasp of issues with confusions.
Analysis relying on the partial reproduction of ideas from taught materials. Some
concepts absent or wrongly used.
Rudimentary algorithmic/technical solution, but mostly incomplete.
Page 7 of 10
5.3.2. Data preparation and understanding
Grade
band Coursework-specific indicators
Distinction
**+
Evidence beyond the earlier indicators - these solutions are distinctive and as such
there is no set indication of what might be included.
Distinction
70-89
Evidence of a thorough understanding of the data. Analysis and preparation is clearly
explained and decisions justified in the context of the intended purpose. 
Code quality is high. Effective code structure. Effective code documentation. Error
handling thorough and consistently applied.
Merit
60-69
Evidence of a good understanding of the data. Actions taken that would allow the
data set to be used for the intended purpose. 
Code quality mostly adheres to Python standards. Evidence of structure. Appropriate
documentation. Evidence of error handling.
High pass
50-59
Evidence that the student has understood and/or prepared the data using code,
though may be more limited. Decisions taken are not clearly explained. The purpose
given is appropriate for the data.
Reasonable code, using basic required concepts, several flaws in implementation.
Low pass
40-49
The described purpose may not be clear and/or relate well to the given data.
Insufficient evidence that the data has been described and explored.
Rudimentary preparation code, but mostly incomplete.
5.3.3. Database design and creation
Grade
band Coursework-specific indicators
Distinction
**+ Evidence beyond the earlier indicators.
Distinction
70-89
ERD shows an understanding of potential issues that have been considered in the
structure and the extent of the normalisation. 
Code quality is high. Effective code structure. Effective code documentation. Error
handling thorough and consistently applied. Data and relationships are correct in the
database.
Merit
60-69
ERD is appropriate for the data given its intended use in applications. Design is clear
and uses correct notation. Evidence of appropriate normalisation for the intended use.
Code quality mostly adheres to Python standards. Evidence of structure. Appropriate
documentation. Evidence of error handling. There may be minor issues in the data/
relationships in the database.
High pass
50-59
ERD provided and adheres to notation but may lack minor detail and/or limited
evidence of the application of normalisation concepts. 
Appropriate code that generates a database file with data. There may be minor issues
with the code, code quality or data.
Low pass
40-49
ERD provided but may not adhere to an appropriate notation and/or misses required
detail. 
Code shows some understanding but may not generate a usable database file.
5.3.4. Software engineering tools
There are no generic CS criteria relating to this aspect.
Page 8 of 10
Grade band Coursework-specific indicators
Distinction
**+
Near flawless use of a range of appropriate tools. Use of tools beyond the expected
tools.
Distinction
70-89 Effective to exceptional use of the expected tools.
Merit 60-69 Appropriate use of the expected tools.
High pass
50-59 Mostly appropriate use of the expected tools.
Low pass
40-49 Limited, or inappropriate, use of the expected tools.
‘Regular’ use of source code control is stated in section 3.3. ‘Regular’ cannot be precisely define since
students work over different periods. You are expected to make progress on your coursework weekly.
Commits over a period of weeks could be considered ‘regular’; commits only during a short period such as
**2 days could not be considered ‘regular’.
6. Appendices
6.1. Code quality
This is considered as:
Code that is easy for others to read and understand.
Code that is re-usable. The focus in this IEP minor is on writing code that could be used in
applications, not simply on whether the code works.
When you are writing code consider:
code structure, e.g. use of functions, classes, modules, packages.
adherence to python conventions (PEP8 style guide (https://peps.python.org/pep-0008/), PEP275
docstring conventions (https://peps.python.org/pep-0257/)).
documentation (docstrings, comments).
error handling.
6.2. Code that does not fully function
If your code does not fully work, and you cannot ‘debug’ and fix it before submission, then in the relevant
section of the coursework document state as much of the following as you can:
What is the code that doesn’t work (e.g. a function name)
What you think the problem may be. This shows you understand the issue even if you cannot solve
it.
Any solutions you have tried. This shows that you understand the issue and were able to take steps
to try and resolve it.
Clear code documentation (docstrings, comments) is often useful in these situations as the marker can
more easily see what you intended your code to do, even if it does not fully achieve that.
6.3. Guidance on Moodle




請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP0034、代做Java/Python程序設(shè)計(jì)
  • 下一篇:EEEE4116代做、代寫MATLAB程序語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    国产一区二区三区四区大秀| 国产精品videossex久久发布| 美日韩一区二区三区| 久久人人99| 亚洲人成777| 久久爱91午夜羞羞| 99热国内精品永久免费观看| 国产aa精品| 日本电影久久久| 亚洲在线电影| 国内精品麻豆美女在线播放视频 | 老司机午夜精品视频在线观看| 日本亚洲视频| 亚洲精品影院在线观看| 欧洲一区精品| 99视频在线精品国自产拍免费观看| 日韩欧美中文字幕电影| 国产日本精品| 亚洲黄色免费看| 伊人久久亚洲影院| 视频福利一区| 日本强好片久久久久久aaa| 日本91福利区| 亚洲国产伊人| 暖暖成人免费视频| 玖玖在线精品| 精品1区2区3区4区| 欧美一区二区麻豆红桃视频| 久久精品97| 美女www一区二区| 亚洲va中文在线播放免费| 中国女人久久久| 激情综合在线| 精品中国亚洲| 国产精品香蕉| 国产情侣一区在线| 日本亚州欧洲精品不卡| 综合色就爱涩涩涩综合婷婷| 影音先锋一区| 肉肉av福利一精品导航| 久久国产视频网| 四虎4545www国产精品| 黄色在线观看www| 天堂av在线一区| 美女诱惑一区| 亚洲一区亚洲| 在线一区视频| 99热在线精品观看| 亚洲色诱最新| 欧美日韩hd| 99热在线精品观看| 久久国产99| 丝袜美腿亚洲色图| 玖玖国产精品视频| 蜜臀99久久精品久久久久久软件| 奶水喷射视频一区| 蜜桃av综合| 蜜桃视频免费观看一区| 国产精品99视频| av在线视屏| 日韩在线视频精品| 天天综合网天天| 国产精品第一| 免费视频一区| 亚洲国产一区二区三区a毛片| 日韩和欧美一区二区三区| 国产精品地址| 亚洲电影一级片| 一区二区精彩视频| 麻豆一区二区麻豆免费观看| 欧美人体视频| 欧美午夜精彩| 在线观看日韩| 爽好久久久欧美精品| 天堂中文在线播放| 国产亚洲人成a在线v网站| 日韩专区中文字幕一区二区| 一区二区三区在线| 亚洲伊人春色| 欧美韩一区二区| 亚洲午夜在线| 日韩专区欧美专区| 成人va天堂| 日本不卡高清视频| 综合亚洲色图| 精品国产精品| 在线亚洲精品| 日韩中文影院| 亚洲另类黄色| 永久免费精品视频| 国产一区激情| 免费在线日韩av| 综合av在线| 国产在线精彩视频| 欧美一区二区三区免费看 | 另类小说一区二区三区| 亚洲精品国模| 极品中文字幕一区| 日本久久精品| 日本特黄久久久高潮| 美女精品久久| 中日韩男男gay无套| 日韩av首页| 亚洲国产欧美日韩在线观看第一区 | 99久久激情| 国产精品久久占久久| 日韩国产欧美在线观看| 国产永久精品大片wwwapp| 久久人人精品| 黑人精品一区| 中文字幕乱码亚洲无线精品一区 | 国产精品一区二区av交换| 日韩精品一区二区三区中文在线| 精品日韩在线| 日韩一区二区久久| 久久女人天堂| 久久久国产精品入口麻豆| 精品免费视频| 久久亚洲欧美| 久久国产日韩欧美精品| 国产伦精品一区二区三区视频| 久久一区二区三区电影| 天堂成人国产精品一区| 成人国产一区二区三区精品麻豆| 国产美女视频一区二区| 欧美理论电影在线精品| 午夜亚洲一区| 免费看的黄色欧美网站| 久久女人天堂| 日韩三级av| 夜夜精品视频| 国产一区二区三区国产精品| 一区二区三区导航| 欧美日韩导航| 91综合久久一区二区| 麻豆91在线观看| 精品久久ai电影| 成人在线电影在线观看视频| 国产欧美一区| 外国成人激情视频| 欧美一级二级视频| 警花av一区二区三区| 一区在线视频| 国产麻豆久久| 成人自拍在线| 日本黄色精品| 国产精品欧美日韩一区| 欧美日韩激情| 亚洲国产高清视频| 久久精品高清| 亚洲电影成人| 欧美aaa在线| 久久久久国产| 三级精品在线观看| 婷婷精品视频| 国产精品久久久久久久久久齐齐| 日韩激情精品| 另类专区亚洲| 丁香婷婷成人| 成人啊v在线| 国产精品午夜av| 中文在线免费视频| 激情视频亚洲| 成人激情视频| 欧美日韩爱爱| 四虎国产精品免费观看| 日韩欧美国产大片| 国产精品成人av| 久久丁香四色| 国产精品vvv| 日韩免费电影在线观看| 日韩av在线播放网址| 亚洲电影一级片| 97在线精品| 亚洲图色一区二区三区| 欧美激情啪啪| 五月天综合网站| 成人在线日韩| 老司机午夜免费精品视频| 麻豆91在线看| 视频一区二区三区入口| 亚洲专区视频| 欧美精品资源| 99热精品久久| 欧美一级免费| 午夜一区不卡| 激情不卡一区二区三区视频在线| 欧美大胆a人体大胆做受| 荡女精品导航| 欧美亚洲三级| 欧美hd在线| 欧美有码在线| 国产精品草草| 蜜桃视频在线一区| 亚洲精品一二三**| 国产精品一国产精品k频道56| 午夜av一区| 日韩影视在线观看| 捆绑调教日本一区二区三区| 免费成人av|