加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫ENG4200、Python/Java程序設(shè)計(jì)代做
代寫ENG4200、Python/Java程序設(shè)計(jì)代做

時(shí)間:2024-11-24  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:CS1026A代做、Python設(shè)計(jì)程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語(yǔ)言編程
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    欧美视频二区| 亚洲情侣在线| 国产精品免费看| 一区三区自拍| 亚洲五月综合| 日韩在线免费| 国产农村妇女毛片精品久久莱园子 | 大色综合视频网站在线播放| 麻豆免费精品视频| 天堂8中文在线最新版在线| 亚洲精品一二三区区别| 成午夜精品一区二区三区软件| 伊人久久大香线蕉综合影院首页| freexxx性亚洲精品| 99视频+国产日韩欧美| 久久蜜桃精品| 亚洲高清999| 欧美影院精品| 国产精品大片免费观看| 日本精品另类| 日韩欧美高清| 91影院成人| 热久久国产精品| 亚洲黄色影片| 精品一区欧美| 91精品秘密在线观看| 亚洲精品视频一二三区| 怕怕欧美视频免费大全| 在线免费高清一区二区三区| 日韩三级成人| 亚洲精品成a人ⅴ香蕉片| 免费成人av在线| 石原莉奈在线亚洲二区| 伊人久久亚洲美女图片| 国精品一区二区三区| 99欧美视频| 中文字幕av一区二区三区人| 久久九九精品视频| 日韩va欧美va亚洲va久久| 亚洲一区色图| 国产高清精品二区| 亚洲综合色网| 中文字幕成人| 欧美片网站免费| 欧美成人精品午夜一区二区| 中文在线日韩| 欧美日韩黄网站| 高清精品久久| 天堂av一区二区三区在线播放| 99久久久国产| 欧美影院精品| 亚洲aa在线| 日本亚洲不卡| 亚洲精品白浆高清| 少妇精品在线| 国产成人高清精品免费5388| 精品国产91久久久久久浪潮蜜月| 欧美综合自拍| 九一成人免费视频| 国产一区二区精品| 免费不卡在线观看| 中文一区一区三区高中清不卡免费| 亚洲精品mv| 亚洲成人高清| 影音先锋在线一区| 国产精品亚洲四区在线观看| 国产一区二区观看| 成人av地址| 欧美日韩一区二区三区视频播放| 欧美日韩精品一区二区视频| 欧美日韩国产一区二区三区不卡| 亚洲一区二区免费看| 蜜臀久久99精品久久久画质超高清 | 日韩电影在线一区| 日本不卡高清| 伊人成年综合电影网| 免播放器亚洲一区| 国产成人精品一区二区三区视频| 久久精品国产亚洲一区二区三区| 欧美激情日韩| 久久九九精品视频| 激情欧美日韩一区| 美女精品在线| 高清在线一区| 国产精品亚洲一区二区在线观看| 日本一区精品视频| 欧美精品一区二区久久| 亚洲制服少妇| 成人国产精品一区二区免费麻豆| 欧美精品国产一区| y111111国产精品久久久| 九九综合在线| 日韩理论视频| 亚洲精品资源| 欧美在线导航| 亚洲欧美日韩国产综合精品二区| 蜜桃视频www网站在线观看| 亚洲欧美网站在线观看| 66精品视频在线观看| 国产在线日韩| 久草在线资源福利站| 国产情侣一区| 国产精品调教| 蜜桃久久av| 日本怡春院一区二区| 91精品国产自产在线丝袜啪| 最新国产拍偷乱拍精品| 欧美亚洲黄色| 日产国产高清一区二区三区| 欧美天天视频| 91福利精品在线观看| 亚洲人成网亚洲欧洲无码| 国内精品视频在线观看| 无遮挡爽大片在线观看视频| 国产高清日韩| 999国产精品| 欧美日韩精品免费观看视欧美高清免费大片| 国产精品hd| 激情欧美日韩一区| 91亚洲视频| 亚洲国产aⅴ精品一区二区| 噜噜噜在线观看免费视频日韩 | 97在线精品| 国产精品欧美三级在线观看| 免费视频一区三区| 国产第一精品| 大陆精大陆国产国语精品| 国产精品久久久乱弄| 国产成人三级| 99伊人成综合| 午夜性色一区二区三区免费视频| 极品av少妇一区二区| 成人精品国产| 色天天色综合| 国产精品麻豆成人av电影艾秋| 国产一区二区三区不卡av| av在线中出| 免费看日产一区二区三区| 国产精品久久久久久麻豆一区软件 | 欧美天天综合| 日韩国产欧美三级| 极品少妇一区二区三区| 国产日韩欧美| 免费精品国产的网站免费观看| 亚洲高清资源| 亚洲第一伊人| 亚洲精品国产日韩| 影音先锋国产精品| 99热这里有精品| 老司机精品视频网站| 日韩电影不卡一区| а√在线中文在线新版| 91成人午夜| ww久久综合久中文字幕| 99久久99久久精品国产片果冰| 久久亚洲精品人成综合网| 激情五月***国产精品| 国产一区二区三区的电影| 国产精品88久久久久久| 中文字幕一区二区三三| 日韩中文欧美在线| 秋霞一区二区三区| 国产成人久久精品麻豆二区| 欧洲杯半决赛直播| 国产成年精品| 色乱码一区二区三区网站| 亚洲成av人片在线观看www| 日韩高清在线| 亚洲国产一区二区三区在线播放| 欧美激情自拍| 国产精品论坛| 久久国产精品亚洲人一区二区三区 | 亚洲欧美伊人| 韩国三级成人在线| 一区二区乱码| 一本久久青青| 国产精品一站二站| 天堂中文最新版在线中文| 91精品一区二区三区综合| 欧美精品国产一区二区| 阿v视频在线观看| 极品日韩av| 婷婷综合电影| 一区二区毛片| 男人操女人的视频在线观看欧美| 国产福利资源一区| 欧美日本免费| 日韩在线观看| 好看的av在线不卡观看| 日韩电影在线一区二区| 日日嗨av一区二区三区四区| 日韩精品一级二级| 久久精品不卡| 日韩精彩视频在线观看| 久久在线精品| 伊伊综合在线| 亚洲欧洲视频| 成人免费av| 日韩电影一区二区三区四区| 日本一区二区中文字幕|