加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久久久久久久99精品大| 青青青免费在线视频| 综合干狼人综合首页| 亚洲成人一区在线观看| 99视频精品| 精品人人人人| 国内成人精品| 一区二区精品| 久久毛片亚洲| 性色一区二区| 激情久久婷婷| 草莓视频一区二区三区| 国内揄拍国内精品久久| 亚洲综合在线电影| 久久久久久久欧美精品| 亚洲成人tv| 日韩中文一区二区| 成年永久一区二区三区免费视频| 78精品国产综合久久香蕉| 巨乳诱惑日韩免费av| 欧美日韩国产免费观看视频| 国产精品毛片久久久| 国产一区二区三区探花| 日韩国产高清影视| 亚洲精品tv| 免费高潮视频95在线观看网站| 国产精品美女久久久浪潮软件| 欧美丝袜一区| 精品一区二区男人吃奶| 综合激情五月婷婷| 亚洲免费福利一区| 国产精品欧美三级在线观看| 麻豆精品新av中文字幕| 久久亚洲精品人成综合网| 精精国产xxx在线视频app| 国产一二三在线| 日韩av有码| 97视频热人人精品免费| 色综合咪咪久久网| 日韩在线观看一区二区| 乱码第一页成人| 亚洲一区成人| 亚洲永久字幕| 老色鬼久久亚洲一区二区| 中文国产一区| 亚洲专区一区二区三区| 国产精品女主播一区二区三区| 99国产精品久久久久久久| 婷婷六月综合| 黄色亚洲免费| 天使萌一区二区三区免费观看| 亚洲神马久久| 久久久久久久欧美精品 | 久久一区激情| 久久永久免费| 国产精品啊啊啊| 欧美三级不卡| 国产亚洲一区二区三区啪 | 91国内精品| 精品久久久久久久久久久下田 | 天天做夜夜做人人爱精品| 久久人人精品| 亚洲欧美色图| 视频在线观看一区二区三区| 久久久久免费| 日本综合久久| 欧美一区影院| 影音先锋日韩精品| 日本欧美韩国国产| 福利在线一区| 九一精品国产| 视频一区二区三区中文字幕| 国产精品国内免费一区二区三区| 波多视频一区| 国产欧美三级| 国产探花在线精品一区二区| 国产美女亚洲精品7777| 久久久久.com| 日韩天堂av| 日韩夫妻性生活xx| 久久精品国产福利| 欧美三级一区| 欧美精品中文| 国产精品免费看| 日韩伦理视频| 一区二区三区网站 | 伊人www22综合色| 国产精品99一区二区| 视频一区二区国产| 日韩美女在线| 国产一区二区在线| 国产一区二区三区不卡av| 午夜久久福利| 欧美aa在线观看| 亚洲欧美在线综合| 日日夜夜免费精品| 亚洲宅男一区| 亚洲三级网站| 国产真实有声精品录音| 97人人澡人人爽91综合色| 国产精品99久久| 中文字幕在线高清| 亚洲精选91| 日本伊人久久| 亚洲一区二区免费在线观看| 亚洲国产中文在线| 国产精品五区| 日韩成人在线电影| 美女国产精品久久久| 日韩一级网站| 国产激情欧美| 日本一区影院| 国产精品视频久久一区| 99精品免费网| 一区二区三区四区视频免费观看 | 久久不见久久见中文字幕免费| 久久激情中文| 亚洲三级欧美| 国内精品久久久久久久影视简单 | 国产欧美日韩一级| 日本亚洲一区二区| 亚洲中字在线| 美女免费视频一区| 狼人精品一区二区三区在线| 日产午夜精品一线二线三线| 日本不卡123| 欧美午夜精彩| 日韩三级成人| 精品欠久久久中文字幕加勒比| 岛国av在线网站| 久久av资源| 三级在线观看一区二区| 99re8精品视频在线观看| 成人av资源电影网站| 精品久久毛片| 丝袜av一区| 成人国产一区| 日日天天久久| 久久久久久一区二区三区四区别墅| 亚洲三区欧美一区国产二区| 日韩www.| 日韩精品视频中文字幕| 久久久久久久欧美精品| 亚洲人成精品久久久| 老鸭窝毛片一区二区三区 | 精精国产xxxx视频在线野外| 秋霞午夜一区二区三区视频| 九色porny自拍视频在线播放| 日韩av一区二区三区| 97视频热人人精品免费| 日韩在线观看一区二区三区| 欧美激情偷拍自拍| av日韩精品| 成人av观看| 精品国产aⅴ| 国产原创一区| 亚洲小说欧美另类婷婷| 国内视频精品| 手机精品视频在线观看| 日韩视频一二区| 二吊插入一穴一区二区| 久久天堂精品| 亚洲国产精品第一区二区三区| 伊人影院久久| 亚洲图区在线| 日韩av首页| 亚洲电影影音先锋| 国产一区二区三区电影在线观看 | 男女性色大片免费观看一区二区| 久久av影视| 日韩在线观看电影完整版高清免费悬疑悬疑 | 久草在线资源站手机版| 都市激情亚洲欧美| 99精品国产99久久久久久福利| 欧美日韩精品| 日韩成人av影视| 国产精品久久久久久久久免费高清| 欧美搞黄网站| 亚洲精品无吗| 香蕉成人在线| 国产农村妇女毛片精品久久莱园子| 亚洲免费观看高清完整版在线观| 性欧美freesex顶级少妇| 99精品全国免费观看视频软件| 亚洲三级观看| 超碰成人av| 欧美亚洲激情| 亚洲成人一品| 日韩在线理论| 国产一区白浆| 精品在线网站观看| 精品一区二区三区亚洲| 中文字幕日本一区二区| 一本久久知道综合久久| 国产乱人伦丫前精品视频| 国产精品v亚洲精品v日韩精品| 四虎国产精品免费观看| 欧美二区不卡| 国产精品17p| 国产午夜久久av|