加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

C39RF程序代寫(xiě)、代做Python設(shè)計(jì)編程
C39RF程序代寫(xiě)、代做Python設(shè)計(jì)編程

時(shí)間:2025-02-27  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Subject: C39RF Applied Financial Modelling in Python Case Study 1
Date: Submission deadline: 28th of February, 12pm UK time, 4pm Dubai time, and 8pm Malaysia
time.
Please note the following before you commence the assignment:
• You have to submit a Jupyter Notebook file (with extension ipynb) as well as a script with
the html extension which contains the solutions (output) to the tasks enumerated below.
Upload these files into the Assignment - Case Study 1 Submission. Failure to upload the
html file will result in losing 10 marks.
• Number the tasks so it is clear which one your are answering.
• You also have to submit all the csv files that contain your data - failing to do so will result in
losing marks.
• Make sure you don’t download data that was discussed in class (lectures and tutorials) such
as: IBM, META, Spotify, Apple, Nvidia, Microsoft, Google, Tesla, S&P index, FTSE100 index,
DAX index, VIX index, Bitcoin, Oil price, Gold price.
• Please remember that only four types of files are allowed to be uploaded onto Canvas/Turnitin:
ipynb, html, excel and csv. Do not upload PNG files. Make sure you download the files and
upload them well before the deadline. Practice downloading the ipynb and html files from
the Jupyter Notebook now.
• For each task, 25% of the marks will be awarded for successfully writing up the code, and
the rest of the marks (75%) will be given for explaining in-depth the results. If you are asked
to discuss for example a plot in 100 words and you only discussed it in 50 words, your mark
will reflect that. Of course, the content of your discussion matters primarily and not the
length of your discussion. Your discussion should always relate to results and you should
not discuss generic issues (such as defining what p-values or test statistics are) as those do
not carry marks.
• Discussions should be provided in a Markdown cell and not in a code cell as comments. Do
not provide definitions of statistical and econometrics terms as that will not yield marks.
• Only use code that was used in Lectures and Tutorials. Do not produce a script using
different coding techniques - otherwise, it will be assumed that external help was utilised,
which will result in your assessment being reported as academic misconduct.
• This assessment is worth 100 marks and it accounts for 50% of your final grade.
• Make sure you have read, understood and followed the Universitys Regulations on plagia rism as published on the Universitys website, that you are aware of the penalties that you
will face should you not adhere to the University Regulations:
https://www.hw.ac.uk/uk/services/academic-registry/academic-integrity/
academic-misconduct.htm
1
• Make sure you have read, understood and avoided the different types of plagiarism ex plained in the University guidance on Academic Integrity and Plagiarism:
https://heriotwatt.sharepoint.com/sites/skillshub/SitePages/Academic-Integrity-and-Plagiarism.
aspx
You have to solve each task to get full marks.
1. Download daily adjusted close price of stock market data from Yahoo Finance for the period
January 2019 to December 2024 for two corporations from two different industries (choose
from: Automobile, Information Technology, Pharmaceuticals, Financial, Healthcare). The
two companies should be of high market capitalisation and they should not have been dis cussed in class. You should use a data scraping method that was used in class. 2 marks
2. Create a new dataframe (using the correct pandas method) with the two stocks. Make sure
the index column is not displayed. 1 mark
3. If the prices of the two stocks are of the same magnitude, plot a timeline of your two time
series (prices) in a single plot. However, if your two stock prices are of different magnitude,
display the two plots separately. Make sure the timeline (date) is visible. Name the axes and
give a title. Also, provide a legend. Discuss the figure in a Markdown cell in 100 words. 3
marks
4. Calculate the daily first differenced log returns for your two variables. 2 marks.
5. Check for missing values in the two returns series and remove them. Then inspect the head
of the two time series to show there are no missing values. Also, display the last 10 rows of
your returns. All these tasks should be executed in a single cell, not separately. 3 marks
6. Save the dataframe as a csv file. You will have to submit this file along with your Jupyter
Notebook and html files. 0.5 mark
7. Calculate the summary statistics for the two stock market returns. Critically discuss the
summary statistics in 200 words in a Markdown cell. 3 marks
8. Calculate the correlation between the two stock returns. Discuss your results briefly (max. 3
sentences) in a Markdown cell. 2 marks
9. Plot a histogram with 70 bins for both of your stock returns. Display the two histograms in
separate figures. Also save your histograms in a png format. These tasks should be executed
in one cell. Discuss in a Markdown cell in 100 words whether the data appears normally
distributed. 4 marks
10. Plot a timeline of your two returns in a single plot. Make sure the timeline (date) is visible.
Discuss the figure in a Markdown cell in no more than 100 words. 3 marks
11. Check your two returns’ series for stationarity and discuss the results in-depth in a Mark down cell in no more than 150 words. 3 marks
2
12. Check if your two returns’ series have outliers. Plot a boxplot for each of the time series
showing the outliers. Discuss in a Markdown cell the plots in 100 words. 3 marks
13. Remove the outliers and replot the two boxplots. Discuss in a Markdown cell the plots in
100 words. 3 marks
14. Download the daily adjusted prices of 30 individual stocks of a main stock market index
(stock market index constituents). You can find the list of indices here: https://finance.yahoo.com/world indices/. We’ve done a similar task for the DAX30 index stock market constituents. At this
stage you need to download the individual stocks of the index and not the index itself. The
stocks should not be the constituents of the S&P500, FTSE100 or the DAX30 indices. The
target period is January 2019 to December 2024. Discuss the index, how is calculated and its
constituents briefly in 100 words in a Markdown cell. 2 marks
15. Calculate and plot the cumulative returns time series for the index constituents. Discuss the
plot in no more than 100 words in a Markdown cell. 3 marks
16. Save the cumulative returns in a csv file. You will have to submit this file along with your
Jupyter Notebook and html files. 0.5 mark
17. Compute and plot the first principal component and discuss your results in detail (300
words). The task is to find out which stocks cause the highest degree of variability in the
index. 8 marks
18. Build a portfolio of stocks by allocating funds proportionally to the 1st principal component
in order to replicate the returns of your chosen index. You need to calculate the cumulative
returns using the weights of the top stocks that form the 1st principal component. 2 marks
19. Plot the cumulative returns of the newly created portfolio. Also, save the figure as a png file.
The two tasks should be executed in one cell. Discuss the plot in 100 words. 2 marks
20. Download the daily adjusted closing price for the index for the January 2019-December 2024
period. 2 marks
21. Calculate the first differenced log returns for the index and save them in a csv file. You will
have to submit this file as part of your assessment. 1 mark
22. Plot in one figure the portfolio of stocks you’ve created using the first principal component
as well as the returns of the index. Discuss whether the portfolio tracks the index or not in a
maximum of 200 words in a Markdown cell. 4 marks
23. Evaluate the effect of the Covid19 pandemic on individual stock returns. Discuss the results
in-depth in 250 words in a Markdown cell. 9 marks
24. Download daily adjusted closing price data for two stocks: one from the Telecom industry
(this will be your dependent variable) and one from the Energy industry (this will be your
independent variable). Both companies should be of high market capitalisation. The period
of interest is January 2000 to December 2024. 2 marks
25. Calculate first the differenced log returns, then transform the data to a dataframe and plot
both returns in one plot. The first two tasks should be executed in one cell. Discuss the plot
in 100 words in a Markdown cell. 4 marks
3
26. Save the returns as a csv file. You will have to submit this file along with your Jupyter
Notebook and html files. 0.5 mark
27. Plot a histogram with 80 bins for both returns separately. Discuss the normality of your data
in a Markdown cell in 100 words. 3 marks
28. Run summary statistics on your returns dataframe and discuss the results in 100 words in a
Markdown cell. 2 marks
29. Calculate the correlation, skewness and kurtosis of the returns. Discuss the results in 150
words in a Markdown cell. 4.5 marks
30. Run an OLS regression and discuss your results in-depth in a Markdown cell in 250 marks.
9 marks
31. Calculate the regression residuals and test these for the Classical Linear Model assumptions.
Discuss your results in a Markdown cell in 300 words. Provide plots where necessary. 9
marks
Total 100 marks
Don’t forget the following:
• Make sure you show all of the outputs (solutions, plots, etc) before downloading the ipynb
and html files.
• Download the ipynb and html scripts and upload them to the Assessment page.
• Upload all the csv files to the Assessment page. Do not upload the png files onto Canvas.


請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:金豆錢(qián)包強(qiáng)制下款怎么辦?金豆錢(qián)包全國(guó)客服電話是多少
  • 下一篇:代寫(xiě)B(tài)ANA201B、Python語(yǔ)言程序代做
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    蜜臀久久久99精品久久久久久| 日韩福利电影在线| 久久先锋影音| 99久久香蕉| 国内精品久久久久久久97牛牛| 日韩一区精品字幕| 99久久亚洲精品蜜臀| 久久综合色占| 日本久久一区| av在线视屏| 亚洲一区二区成人| 久久精品国产亚洲5555| 国产精品成人3p一区二区三区 | 欧美特黄一级| 日韩精品免费视频一区二区三区| 久久在线91| 欧美三区四区| 久久亚洲一区| 波多野结衣一区| 国产精品主播在线观看| 欧美影院视频| 在线看片一区| 香蕉久久一区| 亚洲黄色中文字幕| 久久av最新网址| 小说区图片区色综合区| 亚洲欧洲国产精品一区| 国产一区二区三区网| 日本美女视频一区二区| 欧美成人一二区| 欧美福利在线播放| 成人黄色小视频| 丝袜a∨在线一区二区三区不卡| 欧美一级精品片在线看| 欧美日韩夜夜| 国产一区丝袜| 99ri日韩精品视频| 日韩深夜福利| 亚洲黄色录像| 日韩av黄色在线| 日韩欧美黄色| 日韩成人伦理电影在线观看| 9999精品视频| www 久久久| 电影中文字幕一区二区| 欧美精品aa| 亚洲影视一区二区三区| 国产精品videosex极品| 青青国产91久久久久久| 看片网站欧美日韩| 另类人妖一区二区av| 国产毛片精品久久| 免费在线日韩av| 久久精品午夜| 欧美精品aa| 国产精品午夜一区二区三区| 国产成人精品一区二区免费看京| 国产美女精品视频免费播放软件| 国产精品一区二区三区av| 国产精品2区| 欧美人与物videos另类xxxxx| www.久久爱.com| 亚洲+小说+欧美+激情+另类 | 在线欧美激情| 综合色就爱涩涩涩综合婷婷| 亚洲日产av中文字幕| 日韩一区二区三区精品| 高清日韩中文字幕| 欧美影院三区| 亚洲精品1234| 久草免费在线视频| 欧美一区二区三区婷婷| 美女在线视频一区| 你懂的国产精品| 日本少妇精品亚洲第一区| 9国产精品午夜| 欧美一站二站| 狂野欧美性猛交xxxx巴西| 乱人伦视频在线| 成人黄色在线| 国产精久久一区二区| 日韩精品中文字幕吗一区二区| www.神马久久| 欧美日韩国产一区精品一区| 蜜臀精品久久久久久蜜臀| 色一区二区三区| 日韩国产高清影视| 日韩激情视频网站| 嫩草国产精品入口| 日韩午夜电影| 92国产精品| 蓝色福利精品导航| 日韩成人伦理电影在线观看| 欧美日韩一区二区综合| 免费在线视频一区| 色综合视频一区二区三区44| 国内精品视频| 久久婷婷久久| 成人免费图片免费观看| 美女尤物国产一区| 日韩美女国产精品| 波多野结衣一区| 欧美精品资源| 久久99性xxx老妇胖精品| 久久黄色影院| av在线私库| 999精品视频在线观看| 精品国产一区探花在线观看 | 成人午夜av| 免费精品视频在线| 久久在线精品| 日本99精品| 亚洲一区观看| 麻豆精品蜜桃视频网站| 成人中文字幕视频| 老司机精品视频网站| 日韩精品电影在线| 国产精品久久久久久久久久白浆| 国产精品普通话对白| 美日韩一区二区| 东京久久高清| 久久男人天堂| 国产精品亚洲人成在99www| 蜜桃一区二区三区| 91看片一区| 国产日韩在线观看视频| 久久国产99| 欧美激情精品久久久六区热门| 色综合www| 先锋欧美三级| 欧美三区视频| 黑森林国产精品av| 亚洲v天堂v手机在线| 在线观看国产精品入口| 国产精品久久久久9999高清| 美女主播精品视频一二三四| 日韩免费久久| 99久久人爽人人添人人澡| 97久久视频| 日韩av高清在线观看| 免费观看日韩av| 国内成人自拍| 视频一区二区三区中文字幕| 一区二区三区中文| 很黄很黄激情成人| 国内久久精品| 在线视频免费在线观看一区二区| 国产精品va| 中文精品视频| 国产伦精品一区二区三区千人斩| 鲁大师成人一区二区三区| 99精品国产九九国产精品| 9国产精品视频| 欧美影院在线| 91青青国产在线观看精品| 日韩精品丝袜美腿| 正在播放日韩精品| 欧美国产不卡| 成人午夜sm精品久久久久久久| 台湾佬综合网| 捆绑调教一区二区三区| 日韩午夜免费| 午夜精品福利影院| 极品美女一区| 色婷婷综合久久久久久| 久久精品欧洲| 在线视频日韩| 精品国产鲁一鲁****| 日韩中文字幕高清在线观看| 久久一区二区三区喷水| 影音先锋中文字幕一区| 亚洲一区亚洲| 国产日韩在线观看视频| 69堂精品视频在线播放| 欧美ab在线视频| 国产亚洲字幕| 中文字幕成在线观看| 久久神马影院| www.久久爱.com| 日韩系列欧美系列| 国产一区日韩一区| 国产一区二区三区四区五区| 欧美中文字幕精在线不卡| 久久理论电影| 欧美极品在线观看| 欧美综合影院| 奶水喷射视频一区| 成人看片黄a免费看视频| 日韩精品福利网| 欧美高清视频在线观看mv| 久久婷婷麻豆| 欧美男同视频网| 免费一级欧美在线观看视频| 午夜一级在线看亚洲| 精品国产中文字幕第一页 | 亚洲www啪成人一区二区| 婷婷伊人综合| 9999久久久久| 高清一区二区三区av| 免费在线观看一区|