加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

ECE371編程代做、代寫Python程序設(shè)計(jì)
ECE371編程代做、代寫Python程序設(shè)計(jì)

時(shí)間:2025-05-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CPT206代做、代寫Java編程語言
  • 下一篇:CSC1002代寫、代做Python編程設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    视频在线观看一区二区三区| 欧美日本免费| 亚洲国产不卡| 日韩三级av高清片| 麻豆91在线播放| 成人免费图片免费观看| 国产91一区| 日本精品在线播放| 麻豆精品蜜桃视频网站| 国产精品久久久乱弄| 婷婷激情久久| 日韩一区二区三区高清在线观看| 久久国产日韩欧美精品| 成人激情在线| 日韩午夜免费| 久久久人成影片免费观看| 日韩av中文字幕一区二区| 日一区二区三区| 91大神在线观看线路一区| 蜜臀av亚洲一区中文字幕| 激情丁香综合| 精品视频亚洲| 99精品国产高清一区二区麻豆| 国产成人免费av一区二区午夜| 国产成人77亚洲精品www| 欧美高清视频手机在在线| 黄色成人在线网站| 久久一本综合| 91精品一区二区三区综合在线爱| 视频一区国产| 日产国产欧美视频一区精品| 中文字幕免费一区二区| 国产欧美在线| 国产精品综合色区在线观看| 中国字幕a在线看韩国电影| 久久亚洲视频| 午夜在线一区| 午夜亚洲性色福利视频| 国产亚洲毛片| 尤物精品在线| 黄色一区二区三区四区| 激情综合网站| 香蕉av一区二区| 不卡在线一区二区| 女人av一区| 亚洲精品电影| 亚洲欧洲视频| 亚洲一区日韩| 欧美专区一区二区三区| 亚洲欧美网站| 免费观看久久久4p| 成人亚洲一区二区| 国产精品论坛| 日韩不卡在线| 久久xxx视频| 久久天堂影院| 日本不卡在线视频| 你懂的网址国产 欧美| 成人豆花视频| 日韩成人av影视| 大型av综合网站| 亚洲福利精品| 最新国产乱人伦偷精品免费网站| 在线亚洲激情| 97精品国产一区二区三区| 日本午夜大片a在线观看| 亚洲欧美在线成人| 久久精品国产99国产| 日韩高清不卡一区二区三区| 亚洲国产一区二区精品专区| 国产精品欧美日韩一区| 精品91福利视频| 99久久九九| 欧洲毛片在线视频免费观看| 先锋影音久久久| 国产精品久久久久9999赢消| 日韩在线精品| 日本免费新一区视频| 国产精品嫩模av在线| 精品国产18久久久久久二百| 欧美wwwwww| 亚洲最黄网站| 欧美日韩国产v| 日本欧美一区二区三区乱码| 亚洲调教一区| 亚洲高清激情| 欧美jizz| 一二三区精品| 亚洲精品播放| 99国产**精品****| 色天天综合网| 日日夜夜免费精品视频| 亚洲免费成人av在线| 99久久精品网| 国产福利电影在线播放| 久久精品人人做人人爽电影蜜月| 最新亚洲精品| 激情欧美日韩| 天堂av中文在线观看| 午夜天堂精品久久久久| 99国产精品久久一区二区三区| 亚洲欧美偷拍自拍| 欧美日韩国产网站| 亚洲精品白浆高清| 图片小说视频色综合| 日韩一区二区在线免费| 欧美高清hd| 欧美日韩中文一区二区| 国产理论在线| 国产精品一区二区三区四区在线观看 | 国产女优一区| 高清在线一区| 日韩中文字幕在线一区| 99视频精品| 欧美91在线|欧美| 1204国产成人精品视频| 蜜乳av另类精品一区二区| 亚洲国产91| 久久99精品久久久久久欧洲站| 欧美一区=区| 亚洲自拍偷拍网| 99久久夜色精品国产亚洲狼 | 另类国产ts人妖高潮视频| 美日韩一区二区| 美女av一区| 在线一区视频观看| 秋霞午夜一区二区三区视频| 亚洲欧美高清| 国内精品视频| 国产视频一区在线观看一区免费| 日韩和的一区二区| 91精品久久久久久久蜜月| 在线一区视频观看| 超碰精品在线| 日韩欧美看国产| 综合欧美亚洲| 亚洲国产福利| julia中文字幕一区二区99在线| 国产精品久久久久久久免费观看 | 国产亚洲高清一区| 99热这里只有精品8| 欧美黄色aaaa| 最新国产乱人伦偷精品免费网站| 日本伊人午夜精品| 亚洲午夜电影| 亚洲精选成人| 国产精品入口| 国内黄色精品| av手机在线观看| 日韩免费一级| 欧美国产大片| 欧洲在线一区| 一区二区毛片| 天天揉久久久久亚洲精品| 亚洲无中文字幕| 亚洲一区二区伦理| 亚洲三级性片| 日韩精品诱惑一区?区三区| 欧美1区2区3| 国产精品美女午夜爽爽| 狠狠操综合网| 国产高清亚洲| 最新中文字幕在线播放| 日韩精品看片| 亚洲国产精品一区制服丝袜| 一本一道久久综合狠狠老精东影业| 国产精品sm| 老司机免费视频久久| 久久久精品区| 欧美日韩卡一| 亚洲免费黄色| 日韩激情视频在线观看| 日韩网站中文字幕| 美女亚洲一区| 国产一区二区三区天码| 日本在线播放一二三区| 99精品综合| av在线精品| 丝袜美腿一区| 午夜精品网站| 亚洲1区在线观看| 久久天天久久| 男人的天堂亚洲一区| 国产+成+人+亚洲欧洲在线 | 日本精品一区二区三区在线观看视频| 日韩欧美看国产| 欧美特黄一区| 伊人久久影院| 麻豆精品久久久| 在线中文字幕播放| 婷婷精品进入| 一区二区三区在线资源| 麻豆精品久久久| 午夜欧美激情| 欧美精品一区二区三区久久久竹菊| 亚洲婷婷丁香| 日韩综合在线视频| 中文字幕这里只有精品| 午夜精品视频| 欧美激情网址|