加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BISM3206代做、代寫Python編程語言
BISM3206代做、代寫Python編程語言

時間:2025-06-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


O-BISM3206 ver or Under Asking -BISM3206

Classifying Property

Price Outcomes in the

Australian Market

  
BISM3206 Assignment

2025 S1 – Assignment

Context

The Australian real estate market is one of the most dynamic and competitive in the world, offering a

wide range of properties to both buyers and sellers. For homeowners looking to sell, setting the right

price is a critical, and often emotional, decision. After all, property transactions are among the most

significant financial events in a person's life.

Sellers typically set a listing price based on what they believe their home is worth and what the market

might bear. But things don’t always go as planned. Some properties attract intense buyer interest and

sell for more than the asking price. Others fall short, forcing the seller to accept less than they’d hoped.

If sellers had a way to estimate in advance whether their listed price is likely to be exceeded or undercut,

they could make more informed pricing decisions, better manage expectations, and potentially

maximize their return.

In this assignment, your task is to build a binary classification model that predicts whether a property

will be sold at a higher or lower price than the advertised price set by the seller.

Target Variable

The target variable price_outcome indicates whether a property was sold at a higher, equal or lower

price compared to the listing price.

The values in the price_outcome column are:

 Higher: Sold price is greater than the listed price

 Equal: Sold price is the same as the listed price

 Lower: Sold price is equal to or less than the listed price

This is a binary classification problem; therefore, you should not include any data where the target

value is ‘Equal’. Your model should learn to predict this outcome using the available features of each

property outlined below.

Dataset

You are provided with a dataset of 6,957 recently sold properties, between February 2022 and February

2023. The predictor variables are:

1. property_address: the address of the property

2. property_suburb : The suburb the property resides in

3. property_state : The state which the property resides in

4. listing_description: The description of the house provided on the listing

2025 S1 – Assignment

5. listed_date: The date the property was listed for sale

6. listed_price: The 代寫BISM3206 ver or Under Asking -BISM3206price the property was listed for

7. days_on_market: The number of days the property was on the market

8. number_of_beds: The number of bedrooms on the property

9. number_of_baths: The number of bathrooms on the property

10. number_of_parks: The number of parking spots on the property

11. property_size: The size of the property in square meters

12. property_classification: The type of property (House/Unit/Land)

13. property_sub_classification: The sub-type of the property

14. suburb_days_on_market: The average days in market that a property is on sale for in a suburb

15. suburb_median_price: The average median property price in a suburb

  
Deliverables

You must submit the following:

1. A written report (via TurnItIn).

2. A Jupyter Notebook (via the Assignment Submission link).

Your report may be structured as:

 Four main sections: a) Introduction, b) Model Building, c) Model Evaluation, d) Findings &

Conclusion, or

 Three main sections: 1) Introduction, 2) Model Building & Evaluation, 3) Findings &

Conclusion

Both structures are acceptable.

Visuals & Output

 You may include up to 8 charts or tables in your report.

 All visuals must be supported by the analysis in your Jupyter Notebook.

 Your notebook must run without errors — only analysis up to the last successfully run cell will

be marked.

 Do not edit the original Assignment_Data.xlsx file before importing.

Formatting and professionalism

 Maximum 1500 words (+/- 10%) – including title page, charts and tables.

 Use formal language and full sentences (no bullet points).

 Times New Roman, 12pt font, single-spaced.

 No appendices allowed.

 Reports can be written in first person if preferred.

Submission

Submit two files with the following naming convention:

StudentID.pdf and StudentID.ipynb

 Written report: via TurnItIn (PDF or DOCX format only)

2025 S1 – Assignment

 Jupyter Notebook: via Assignment Submission link

Example: If your student ID is 12345678, submit:

 12345678.pdf

 12345678.ipynb

Do not zip your files.

  
Note on Academic Integrity

This is an individual assignment. You are encouraged to discuss ideas with your peers but must submit

your own work. Suspected plagiarism or collusion will be treated in line with university policy.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:宜卡花唄官網客服電話全面升級,宜卡花唄以AI技術重塑金融服務體驗新標桿
  • 下一篇:代做159.342 、代寫Operating Systems 編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    妖精视频成人观看www| 六月婷婷色综合| 国产一区日韩欧美| 久久综合给合| 国产精品久久久免费| 91视频精品| 天天射综合网视频| 日本少妇精品亚洲第一区| 免费永久网站黄欧美| 黄在线观看免费网站ktv| 亚洲国产一区二区在线观看 | 国产亚洲高清在线观看| 国产精品久久久免费| 电影91久久久| 国产精品99精品一区二区三区∴| 在线亚洲成人| 久久一本综合| 91精品啪在线观看国产手机| 欧美视频精品全部免费观看| 国产日韩欧美一区在线| 国产精品粉嫩| 久久免费av| 日韩欧美字幕| 免费成人av在线| 国产精品入口66mio| 欧美中文字幕一区二区| 国产一区福利| 久久久久久久久久久久电影| 国产精品亚洲一区二区在线观看| 欧美黄色成人| 欧美aaa大片视频一二区| 91综合在线| 日韩成人激情| 成人黄色小视频| 男女男精品视频网| 免费成人美女在线观看| 视频精品一区二区| 美女精品在线观看| 久久成人精品| 视频一区视频二区中文字幕| 免播放器亚洲| 久久xxxx| 成人影视亚洲图片在线| 国产va在线视频| 日韩中文字幕麻豆| 蜜臀av性久久久久蜜臀av麻豆| 久久亚洲一区| 岛国av在线网站| 国产精品精品| 欧美大胆a人体大胆做受| 蜜臂av日日欢夜夜爽一区| 蜜乳av一区二区| 亚洲精品永久免费视频| 成人福利视频| 国产成人亚洲一区二区三区| 国产一区二区av在线| 国产日韩欧美三区| 欧美激情偷拍| 亚洲97av| 国产成人aa在线观看网站站| 久久精品亚洲人成影院| 成人aaaa| 免费观看成人av| 日韩国产一区| 一区二区三区四区五区精品视频| 麻豆视频观看网址久久| 中文字幕人成人乱码| 日韩电影在线观看完整免费观看| 久久综合给合| 成人久久一区| 黄色欧美日韩| 丝袜亚洲另类欧美| 婷婷综合六月| 亚洲精品美女| 日本中文字幕一区二区视频| 免费日韩一区二区三区| 伊人久久综合| 色婷婷色综合| 少妇精品视频在线观看| 国语精品一区| 免费精品一区| 国内成人在线| 国产网站在线| 日日夜夜免费精品| 综合国产视频| 91精品国产成人观看| 亚洲一区免费| 国产91欧美| 亚洲国产欧美日韩在线观看第一区 | 日韩午夜电影| 日韩不卡视频在线观看| 综合久久久久| 加勒比色综合久久久久久久久| 欧美日韩四区| 日韩不卡视频在线观看| a一区二区三区亚洲| 国产女人18毛片水真多18精品| 9色精品在线| 97欧美成人| 亚洲警察之高压线| 九九久久精品| 免费v片在线观看| 国产一区二区三区电影在线观看| 99久久婷婷| 成人一区二区| 亚洲综合色站| 国产精品av一区二区| 日韩免费一区| 日韩av一级片| 国产亚洲福利| 麻豆成人在线观看| 精品国产成人| 亚洲欧洲自拍| 国产伦精品一区二区三区视频 | 玖玖精品一区| 午夜一区二区三区不卡视频| 日韩国产91| 久久a爱视频| 亚洲一二三四| 日韩区欧美区| 日产精品一区二区| 久久99国产成人小视频| av成人激情| 亚洲色图欧美| 午夜久久影院| 亚洲日本视频| 五月天久久网站| 日精品一区二区三区| 久久亚洲在线| 久久国产视频网| 人人香蕉久久| 国产69精品久久久久9999人| 日本不卡高清| 国产精品久久乐| 欧美成人专区| 久久精品国产亚洲a| 久久久夜夜夜| 老司机精品视频网| 久久精品亚洲欧美日韩精品中文字幕| 肉色欧美久久久久久久免费看| 九色精品蝌蚪| 日韩理论电影| 久久精品国产亚洲blacked| 日韩三区在线| 色婷婷狠狠五月综合天色拍| 福利精品一区| 蜜桃国内精品久久久久软件9| 青青草91视频| 亚洲免费精品| 国产精品一区二区三区av| 国产一区91| 亚洲伊人春色| 日韩精品专区| 久久久水蜜桃av免费网站| 国产一区二区三区的电影 | 麻豆专区一区二区三区四区五区 | 日韩成人午夜精品| 久久久久久夜| 超碰成人免费| 一区二区黄色| 日韩午夜免费视频| 国内一区二区三区| 久久成人一区| 91综合久久爱com| 国产日产高清欧美一区二区三区| 激情久久中文字幕| av在线亚洲一区| 美女av在线免费看| 丝袜av一区| 亚洲综合色网| 日韩精品影院| 在线观看日韩| 亚洲成人影音| 麻豆国产欧美一区二区三区| 免费成人美女在线观看| 国产毛片久久久| 91精品在线免费视频| 欧美韩日一区| 久久人人88| 日韩av黄色在线| 色999久久久精品人人澡69| 一本久道久久综合狠狠爱| 精品视频在线观看网站| 日本免费一区二区三区等视频| 中文精品视频| 大香伊人久久精品一区二区| 另类的小说在线视频另类成人小视频在线| 老司机一区二区三区| 精品理论电影在线| 亚洲久草在线| 高清亚洲高清| 91亚洲自偷观看高清| 激情欧美一区| www.丝袜精品| 国产成人免费av一区二区午夜| yw.尤物在线精品视频| 亚洲一区区二区| 久久一区二区三区电影| 日韩精品社区| 91精品国产一区二区在线观看|