加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫COMP9021object-oriented Python  程序
代寫COMP9021object-oriented Python  程序

時(shí)間:2025-11-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Assignment 2
COMP9021, Trimester 3, 2025
1 General matters
1.1 Aim
The purpose of the assignment is to:
• develop object-oriented Python programs with proper exception handling;
• parse and analyse combinatorial structures;
• generate TikZ/LaTeX diagrams programmatically;
• handle both small and complex structures efficiently.
1.2 Submission
Your program should be stored in a file named arches.py, optionally together with additional files. After
developing and testing your program, upload it via Ed (unless you worked directly in Ed). Assignments
can be submitted multiple times; only the last submission will be graded. Your assignment is due on
November 24 at 11:59am.
1.3 Assessment
The assignment is worth 13 marks and will be tested against multiple inputs. For each test, the au tomarking script allows your program to run for 30 seconds.
Assignments may be submitted up to 5 days after the deadline. The maximum mark decreases by 5% for
each full late day, up to a maximum of five days. For example, if students A and B submit assignments
originally worth 12 and 11 marks, respectively, two days late (i.e., more than 24 hours but no more than
48 hours late), the maximum mark obtainable is 11.7. Therefore, A receives min(11.7, 12) = 11.7 and B
receives min(11.7, 11) = 11.
Your program will generate a number of .tex files. These can be given as arguments to pdflatex to
produce PDF files. Only the .tex files will be used to assess your work, but generating the PDFs should
still give you a sense of satisfaction. The outputs of your programs must exactly match the expected
outputs. You are required to use the diff command to identity any differences between
the .tex files generated by your program and the provided reference .tex files. You are
responsible for any failed tests resulting from formatting discrepancies that diff would have
detected.
1.4 Reminder on plagiarism policy
You are encouraged to discuss strategies for solving the assignment with others; however, discussions
must focus on algorithms, not code. You must implement your solution independently. Submissions are
routinely scanned for similarities that arise from copying, modifying others’ work, or collaborating too
closely on a single implementation. Severe penalties apply.
1
2 Open Meanders
2.1 Background
An open meander is a combinatorial structure represented as a non-self-intersecting curve that crosses a
horizontal line of points, forming arches above and below the line. They can be described by permutations
with specific constraints.
Formally, let (a1, a2, . . . , an) be a permutation of {1,…, n} with n ≥ 2. Each integer corresponds to a
distinct point on a fixed horizontal line. The permutation defines a sequence of arches as follows:
• The first arch is an upper arch, drawn above the line.
• Subsequent arches alternate between upper and lower positions, forming a valid open meander.
• Each arch connects two consecutive points ai and ai+1 in the permutation. The orientation of each
arch depends on the relative order of these points:
– An arch is drawn from left to right if ai < ai+1.
– An arch is drawn from right to left if ai > ai+1.
• Arches on the same side do not intersect.
The collection of upper and lower arches can be represented symbolically using extended Dyck words—
one for each side of the line:
• ( corresponds to the left endpoint of an arch.
• ) corresponds to the right endpoint of an arch.
• 1 represents an end of the curve (a free endpoint) that lies on that side.
The position of the endpoints depends on the parity of n:
• For even n, both ends of the curve lie below the line.
• For odd n, one end lies above and the other below the line.
Each extended Dyck word therefore encodes the complete structure of the arches on its respective side,
though only together do the two sides represent the full open meander.
2.2 Examples
For a first example, consider the permutation (2, 3, 1, 4) and the corresponding generated diagram open_me anders_1.pdf.
• Upper arches extended Dyck word: (())
• Lower arches extended Dyck word: (1)1
For a second example, consider the permutation (1, 10, 9, 4, 3, 2, 5, 8, 7, 6) and the corresponding generated
diagram open_meanders_2.pdf.
2
• Upper arches extended Dyck word: (()((())))
• Lower arches extended Dyck word: 1(())1()()
For a third example, consider the permutation (5, 4, 3, 2, 6, 1, 7, 8, 13, 9, 10, 11, 12) and the corresponding
generated diagram open_meanders_3.pdf.
• Upper arches extended Dyck word: (()())()(()1)
• Lower arches extended Dyck word: ((()1))(()())
2.3 Requirements
Implement in arches.py a class OpenMeanderError(Exception) and a class OpenMeander.
Objects of type OpenMeander are created with OpenMeander(a_1, a_2, ..., a_n), where the arguments
form a permutation of {1,…, n} for some n ≥ 2. You may assume that all arguments are integers.
• If the arguments do not form a permutation of {1,…, n} for some n ≥ 2, raise
OpenMeanderError('Not a permutation of 1, ..., n for some n ≥ 2').
• If they do not define a valid open meander, raise
OpenMeanderError('Does not define an open meander').
Implement in OpenMeander three attributes:
• extended_dyck_word_for_upper_arches, a string representing the upper arches;
• extended_dyck_word_for_lower_arches, a string representing the lower arches;
• draw(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the open meander.
No error checking is required in the implementation of draw(filename, scale=1). You may assume that
filename is a valid string specifying a writable file name, and that scale is an integer or floating-point
number (typically chosen so that the resulting picture fits on a page).
An example interaction is shown in open_meanders.pdf.
Carefully study the three example .tex files. Note that the horizontal baseline extends one unit beyond
each end of the curve. Also note that the scale common to x and y, as well as the values for radius, are
displayed as floating-point numbers with a single digit after the decimal point. The length of the ends of
strings is computed as half of the scale of x and y, and is also displayed as a floating-point number with
a single digit after the decimal point.
3 Dyck Words and Arch Diagrams
3.1 Background
A Dyck word is a balanced string of parentheses representing a system of nested arches above a horizontal
line. The depth of an arch is the number of arches it is nested within, providing a way to analyse the
hierarchical structure.
3
For example, the Dyck word (()(()(()))) contains arches of depth 0, 1, 2, and 3. Dyck words can be
visualised as arches drawn above a horizontal line, with nesting reflected in the vertical stacking of arches.
Unlike open meanders, Dyck words involve only one side of arches (above the line) and do not include
endpoints represented by 1. They provide a simplified context for studying nesting depth and arch
diagrams, and arches can optionally be visually distinguished by color according to their depth.
When colouring is applied, the following sequence is used: Red, Orange, Goldenrod, Yellow, LimeGreen,
Green, Cyan, SkyBlue, Blue, Purple. If the maximum depth exceeds 9, the sequence wraps around. For
example, depth 10 would use Red again, depth 11 Orange, etc.
3.2 Examples
For a first example, consider the Dyck word (((((((((((((()))))))))))))) and the corresponding
generated diagrams, drawn_dyck_word_1.pdf and coloured_dyck_word_1.pdf.
• There is 1 arch of depth 0.
• There is 1 arch of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
• There is 1 arch of depth 4.
• There is 1 arch of depth 5.
• There is 1 arch of depth 6.
• There is 1 arch of depth 7.
• There is 1 arch of depth 8.
• There is 1 arch of depth 9.
• There is 1 arch of depth 10.
• There is 1 arch of depth 11.
• There is 1 arch of depth 12.
• There is 1 arch of depth 13.
For a second example, consider the Dyck word (()(()(()))) and the corresponding generated diagrams,
drawn_dyck_word_2.pdf and coloured_dyck_word_2.pdf.
• There are 3 arches of depth 0.
• There is 1 arch of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
For a third example, consider the Dyck word ((()())(()(()()))) and the corresponding generated
diagrams, drawn_dyck_word_3.pdf and coloured_dyck_word_3.pdf.
4
• There are 5 arches of depth 0.
• There are 2 arches of depth 1.
• There is 1 arch of depth 2.
• There is 1 arch of depth 3.
For a fourth example, consider the Dyck word ((()(()())(()(()(())))((()()))()(()()))) and the
corresponding generated diagrams, drawn_dyck_word_4.pdf and coloured_dyck_word_4.pdf.
• There are 11 arches of depth 0.
• There are 4 arches of depth 1.
• There are 2 arches of depth 2.
• There is 1 arch of depth 3.
• There is 1 arch of depth 4.
• There is 1 arch of depth 5.
3.3 Requirements
Implement in arches.py a class DyckWordError(Exception) and a class DyckWord.
Objects of type DyckWord are created with DyckWord(s), where the argument s is a nonempty string of
parentheses. You may assume that the argument is a string.
• If the argument is the empty string, raise
DyckWordError('Expression should not be empty').
• Otherwise, if the argument contains characters other than parentheses, raise
DyckWordError("Expression can only contain '(' and ')'").
• Otherwise, if the string is not balanced, raise
DyckWordError('Unbalanced parentheses in expression').
Implement in DyckWord three attributes:
• report_on_depths(), a method that outputs the number of arches at each depth, ordered from
smallest to largest depth;
• draw_arches(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the arches;
• colour_arches(filename, scale=1), a method that generates a TikZ/LaTeX file drawing the
arches coloured according to their depth.
5
No error checking is required in the implementation of both methods. You may assume that filename
is a valid string specifying a writable file name, and that scale is an integer or floating-point number
(typically chosen so that the resulting picture fits on a page).
An example interaction is shown in dyck_words.pdf.
Carefully study the eight example .tex files (four for drawing arches, four for colouring arches). Note
that the horizontal baseline extends one unit beyond the leftmost and rightmost arches. Note that the
scale common to x and y is displayed as a floating-point number with a single digit after the decimal
point. Arches are drawn from the leftmost left end to the rightmost left end. Arches are coloured
from largest depth to smallest depth, and for arches of the same depth, from leftmost left end to
rightmost left end.
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫COMP3020J encryptors and decryptors 程序&#160;
  • 下一篇:代寫comp3211程序代做 &#160;IoT Framework&#160;
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    亚洲精品专区| 美日韩黄色大片| 激情久久一区| 日韩电影免费网站| 日韩欧美四区| 久久亚洲一区| 粉嫩av国产一区二区三区| 今天的高清视频免费播放成人| 波多野结衣久久精品| 欧美专区视频| 欧美一区=区| 中文字幕日韩一区二区不卡 | 五月天亚洲一区| 国产精品女主播一区二区三区| 美女尤物国产一区| 久久国产亚洲| 国产精品一卡| 激情自拍一区| 日本女优在线视频一区二区| 欧美中文一区二区| 日韩精品午夜视频| 在线免费观看日本欧美爱情大片| 欧美在线高清| 午夜激情久久| 欧美日韩亚洲一区在线观看| 亚洲欧美偷拍自拍| 亚洲精品无播放器在线播放| 国产精品视频| 国产永久精品大片wwwapp| 亚洲免费中文| 日韩avvvv在线播放| 国产精品25p| 欧美视频二区| 国产精品久久777777毛茸茸 | 国产一区二区久久久久| 欧美91在线| 日韩精品电影一区亚洲| 女人香蕉久久**毛片精品| 欧美日韩亚洲国产精品| 亚洲一区观看| 日韩一级淫片| 欧美a一级片| 国产偷自视频区视频一区二区| 国产精品美女久久久久久不卡| 日韩中文字幕区一区有砖一区| 日韩超碰人人爽人人做人人添| 国产精品成人a在线观看| 99ri日韩精品视频| 欧美淫片网站| 久久国产福利| 麻豆精品国产| 国产日韩精品视频一区二区三区 | 欧美日韩一区二区三区在线电影| 成人在线视频观看| 欧美精品激情| 在线视频亚洲欧美中文| 日本免费一区二区三区等视频| 伊人成人在线| 中文字幕日韩高清在线| 日韩国产在线观看| 美女尤物久久精品| 精品国内亚洲2022精品成人| 欧美日韩亚洲三区| 欧美国产大片| 国产一级久久| 日韩精品午夜| 亚洲免费专区| 青青草91视频| 日韩专区精品| 国产精品婷婷| 久久高清免费| 一区三区自拍| 欧美日本三区| 日韩不卡在线| 久久福利一区| 欧美69视频| 99精品中文字幕在线不卡| 国产精品亚洲一区二区在线观看 | 欧美91在线| 自拍自偷一区二区三区| 色婷婷成人网| 日韩国产一区| 日韩天堂av| 99国产精品免费视频观看| 日本天堂一区| 亚洲久草在线| 青青草97国产精品免费观看无弹窗版 | 亚洲综合伊人| 另类一区二区| 日韩av中字| 97精品97| 亚洲综合社区| 91久久国产| 久久福利综合| 精品国产网站 | 国产中文一区| 韩国女主播一区二区三区| 日韩极品在线| 电影中文字幕一区二区| 亚洲国产网站| 久久一区精品| 国产日本精品| 亚洲国产高清视频| 亚洲成人va| 天天综合网站| 桃色av一区二区| 色综合天天爱| www.youjizz.com在线| 老司机精品久久| 午夜在线视频观看日韩17c| 午夜国产精品视频免费体验区| 欧美影院三区| 久久久综合色| 婷婷精品视频| 免费av一区| 天天久久综合| 日韩午夜一区| 毛片一区二区| 美女视频一区免费观看| 丝袜美腿亚洲一区二区图片| 午夜一区不卡| 日韩制服丝袜先锋影音| 国产精品99一区二区三| 91麻豆国产自产在线观看亚洲| 蜜臀久久99精品久久久久久9| 亚洲欧美日韩一区在线观看| 美女黄色成人网| 美国欧美日韩国产在线播放| 9999国产精品| 欧美13videosex性极品| 成人日韩在线观看| 久久精品二区亚洲w码| 日本中文一区二区三区| 国产精品99久久免费| 婷婷亚洲成人| 欧美18免费视频| 羞羞色午夜精品一区二区三区| 亚洲免费黄色| 蜜臀av性久久久久蜜臀aⅴ四虎| h片在线观看视频免费免费| 欧美日韩国产网站| 麻豆精品一区二区三区| 国产一区二区在线观| 亚洲视频一起| 日韩精品四区| 免费欧美日韩| 久久久一本精品| 六月丁香婷婷久久| 亚洲日产av中文字幕| 成人在线免费观看网站| 亚洲精品2区| 国产伦理精品| 日韩高清不卡在线| 同性恋视频一区| 台湾佬综合网| 老司机午夜精品视频| 日韩一区二区三区免费视频| 另类人妖一区二区av| 日韩电影一区二区三区| 久久精品高清| 色婷婷色综合| 在线观看亚洲| 成人h动漫精品一区二区器材| 欧美日韩激情| 日韩欧美午夜| 91精品麻豆| 日本精品影院| 国产精品毛片久久| 日本vs亚洲vs韩国一区三区| 日韩精彩视频在线观看| 天天久久综合| 日韩av福利| 亚州综合一区| 激情自拍一区| 三上悠亚国产精品一区二区三区| 999久久久国产999久久久| 国产无遮挡裸体免费久久| 性欧美精品高清| 日本伊人色综合网| 日本不卡高清| 久久电影tv| 国产视频一区二区在线播放| 久久精品成人| 深夜成人在线| 亚洲黄页在线观看| 黄色精品网站| 久久国内精品视频| 欧美韩一区二区| 亚洲综合电影| 亚洲丁香日韩| 蜜桃伊人久久| 亚洲天堂免费| 五月精品视频| 一区二区三区导航| 精品香蕉视频| 精品捆绑调教一区二区三区| 日韩高清电影免费| 久久亚洲综合| 国产一区二区三区免费观看在线| 精品日产免费二区日产免费二区|