加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产探花在线精品| 国产一区二区三区不卡av| 黄色在线观看www| 精品丝袜久久| 国产成人免费视频网站视频社区| 日韩www.| 伊人春色精品| 在线综合色站| 国产aa精品| 久久精品资源| 超碰国产一区| 亚洲国产成人精品女人| 经典三级久久| а天堂中文最新一区二区三区| 日本综合字幕| 久久综合影视| 欧美天堂亚洲电影院在线观看| 一区二区三区免费在线看| 影音先锋中文字幕一区| 蜜臀久久精品| 国产精选在线| 久久国产精品久久w女人spa| 欧美影院三区| 欧美日韩一本| 日韩视频一区二区三区四区| 国产成人久久精品一区二区三区 | 日本不卡中文字幕| 青青在线精品| 天堂av中文在线观看| 石原莉奈一区二区三区在线观看| 先锋资源久久| 亚州av乱码久久精品蜜桃| 免费人成在线不卡| 国产高清一区二区| 99视频精品全国免费| 国产成人精品亚洲线观看| 欧美美女在线观看| 999精品嫩草久久久久久99| 一区二区日韩免费看| 国产成人a视频高清在线观看| 九色porny视频在线观看| 免费视频最近日韩| 久久福利精品| 视频一区视频二区在线观看| 亚洲激情偷拍| 亚洲中字在线| 人人狠狠综合久久亚洲| 久久aⅴ国产紧身牛仔裤| 99在线精品视频在线观看| 伊人激情综合| 国产深夜精品| 亚洲欧美bt| 国产精品99久久精品| 成人在线国产| 在线天堂新版最新版在线8| 日本不卡网站| xxxxx性欧美特大| 偷拍中文亚洲欧美动漫| 成人在线观看免费播放| 国产激情欧美| 麻豆视频观看网址久久| 亚洲精选成人| 亚洲综合中文| 亚洲人成网亚洲欧洲无码| 久久爱www成人| 日韩三级网址| 国产精品高潮呻吟久久久久| 国产精品对白久久久久粗| 99久久精品国产亚洲精品| 精品欧美激情在线观看| 久久av在线| 高清毛片在线观看| av成人在线看| 国产精品二区影院| 日韩成人一区二区三区在线观看| 69精品国产久热在线观看| 91精品国产乱码久久久久久久| 羞羞色午夜精品一区二区三区| 免费日韩一区二区| 精品丝袜在线| 日本伊人色综合网| 亚洲丝袜啪啪| 久久激情综合| 国产精品呻吟| 日韩精品免费观看视频| 亚洲三级观看| 日韩电影网1区2区| 久久久久久影院| 鲁大师成人一区二区三区| 亚洲成人va| 99久久久成人国产精品| 91麻豆精品国产91久久久久推荐资源| 久久综合99| а√天堂中文在线资源8| 亚洲国产第一| 国产va免费精品观看精品视频| 欧美黑人做爰爽爽爽| 日韩视频三区| 人人鲁人人莫人人爱精品| 综合激情网站| 精品国产网站| 三级亚洲高清视频| 国产日韩欧美| aaa国产精品视频| 黄色欧美日韩| 深夜日韩欧美| 日韩深夜福利| 伊人久久大香线| 成人h在线观看| 亚洲三级性片| 亚洲激情不卡| 亚洲国产高清视频| 精品国产18久久久久久二百| 五月精品视频| 亚洲国产精选| 69精品国产久热在线观看| 午夜在线一区| 日日夜夜精品免费视频| 伊人精品综合| 蜜桃传媒麻豆第一区在线观看| 日韩精品久久理论片| 国产精品黄网站| 四季av一区二区凹凸精品| 亚洲欧洲一二区| 天天揉久久久久亚洲精品| www成人在线视频| 视频一区中文字幕精品| 国产精品美女久久久| 日本伊人色综合网| 一区二区美女| 日韩亚洲国产免费| 精品国产午夜肉伦伦影院| 日韩电影在线视频| 精品国产欧美| 色偷偷综合网| 日韩av一级电影| 免费观看日韩av| 欧美一级片网址| 亚洲一区视频| 国产伦一区二区三区| 国产精品毛片一区二区三区| 久久只有精品| 免费日韩av片| 国产精品一卡| 久久国产影院| 国产精品亚洲综合久久| 奇米777国产一区国产二区| 国产综合色区在线观看| 亚洲国产欧美在线观看| 免费高潮视频95在线观看网站| 2020国产精品极品色在线观看| h片在线观看视频免费| 日韩一二三区| 精品欧美日韩精品| 久久蜜桃资源一区二区老牛| 国产资源一区| 91成人精品视频| 欧美激情1区2区3区| 免费国产自线拍一欧美视频| 国产精品嫩模av在线| 日韩av有码| 草莓视频一区二区三区| 精品免费av一区二区三区| 欧美调教在线| 麻豆国产精品官网| 午夜亚洲视频| 午夜久久av| 亚洲国产尤物| 51精产品一区一区三区| 精品一区二区三区中文字幕在线| 日韩综合网站| 精品久久久亚洲| 日本不卡不码高清免费观看| 久久不射网站| av成人综合| 麻豆极品一区二区三区| 久久亚洲影院| 北条麻妃一区二区三区在线观看| 久久国产麻豆精品| 国产精品外国| 国产精品视频3p| 亚洲精品专区| 天堂√中文最新版在线| 色婷婷综合久久久久久| 欧美精品成人| 新版的欧美在线视频| 欧美国产91| 精品国产一区二区三区2021| 日韩一区二区三免费高清在线观看| 亚洲电影在线一区二区三区| 亚洲资源网站| 另类一区二区三区| 首页国产欧美日韩丝袜| 91精品国产91久久综合| 欧美国产中文高清| 日韩毛片网站| 国产精品久久久久久麻豆一区软件 | 人人超碰91尤物精品国产| 国产精品成人自拍| 亚洲一本二本|