加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MA2552代做、代寫Matlab編程語言

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設計
  • 下一篇:COMP528代寫、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    中文在线аv在线| 无码少妇一区二区三区| 久久综合影视| 高清日韩中文字幕| 国产视频网站一区二区三区 | 久久精品国产精品亚洲精品| 日韩视频三区| 精品久久久久久久久久久aⅴ| 在线观看亚洲精品福利片| 日本成人一区二区| 美国毛片一区二区| 成人av国产| 欧美三级午夜理伦三级在线观看| 欧州一区二区三区| 日韩国产在线一| 九九精品调教| 国产极品在线观看| 午夜精品网站| 欧美成人亚洲| 精品伊人久久久| 玖玖精品一区| 亚洲自拍电影| 国产一区二区在线| 综合视频在线| 麻豆成人av在线| 成人黄色毛片| 国产成人精品一区二三区在线观看| 亚洲免费网站| 亚洲精品1区2区| 亚洲高清影视| 久久一区二区三区喷水| 欧美激情99| 欧美三区视频| 免费观看亚洲视频大全| 亚洲香蕉视频| 国产欧美日韩一区二区三区四区| 欧美日本不卡高清| 青青青伊人色综合久久| 久久精品av麻豆的观看方式| 日本美女久久| 欧美美女福利视频| 88xx成人免费观看视频库| 日韩理论电影院| 日韩欧美不卡| 第四色男人最爱上成人网| 国产精品成人a在线观看| 蜜桃av综合| 久久久久久夜| 樱花草涩涩www在线播放| a级片在线免费观看| 另类图片综合电影| 天堂中文在线播放| 欧美亚洲黄色| 国产日韩一区| 欧美国产激情| 色综合综合网| 欧美色一级片| 亚洲网站视频| 美女久久一区| 快播电影网址老女人久久| 中文字幕系列一区| 国产情侣一区| 国产精品一区二区三区av| 亚洲国产合集| 国产精品1luya在线播放| 久久久久久久久丰满| 亚洲精品国产首次亮相| 国产精品日本欧美一区二区三区| 久热综合在线亚洲精品| 国产精品久久观看| 欧美aa在线| 亚洲国产精品第一区二区| 国产视频网站一区二区三区| 精品国产一区二区三区2021| 成人在线免费观看网站| 亚洲精品电影| 国产欧美一区二区三区精品酒店| 欧美xxxx性| 亚洲图片小说区| 亚洲亚洲一区二区三区| 久久高清免费| 国产乱码精品一区二区亚洲| 欧美另类综合| 视频一区二区不卡| 欧洲一级精品| 日本色综合中文字幕| 亚洲精品aaaaa| 精品成人自拍视频| 日韩香蕉视频| 日韩中文影院| 国产精品1区在线| 精品久久ai电影| 亚洲欧美日韩国产一区| 少妇精品视频一区二区免费看| 99精品免费| 久久久91麻豆精品国产一区| 久久精品综合| 蜜桃视频在线一区| 欧美一区在线看| 日本三级久久| 亚洲国产一区二区在线观看 | 国产一区二区高清| 日韩久久一区二区三区| 国产欧美91| 欧美偷拍综合| 牛牛精品一区二区| 国产尤物久久久| jizzjizz欧美69巨大| 欧美国产大片| 亚洲国产精品嫩草影院久久av| 亚洲午夜黄色| 成人国产一区| 爱啪啪综合导航| 日本蜜桃在线观看视频| 日本免费在线视频不卡一不卡二| 久久中文字幕一区二区| 伊人久久亚洲影院| 粉嫩91精品久久久久久久99蜜桃 | 日本久久一二三四| 另类小说视频一区二区| 精品在线网站观看| 极品美女一区| 日本亚洲三级在线| 亚洲欧美大片| 亚洲欧美综合久久久| 亚洲午夜极品| 日韩一级视频| 99精品在线免费在线观看| 日本黄色免费在线| 日韩系列在线| 日本激情一区| 久久99蜜桃| 久久www成人_看片免费不卡| 欧美日韩亚洲国产精品| 亚洲小说欧美另类婷婷| 婷婷久久免费视频| 精品国内亚洲2022精品成人| 亚洲人成在线网站| 一本一道久久a久久| 91麻豆精品国产91久久久平台| 国产欧美日韩精品高清二区综合区| 亚洲成人日韩| 久久久久观看| 一本不卡影院| 少妇精品久久久一区二区三区| 麻豆久久婷婷| 亚洲瘦老头同性70tv| 成人三级高清视频在线看| 日本一区福利在线| 蜜乳av一区二区| 一区二区在线免费播放| 超碰国产一区| 精品久久精品| 日本伊人午夜精品| 欧美日韩日本国产亚洲在线| 国产一区二区三区精品在线观看| 免费欧美在线| 日本免费精品| 日韩欧美专区| 欧美日韩国产一区二区三区不卡| 欧美精品福利| 日韩主播视频在线| 97精品久久| 美女一区二区视频| 亚洲欧美日韩综合国产aⅴ| 国产综合久久久| 女海盗2成人h版中文字幕| 特黄特色欧美大片| 国语对白精品一区二区| 男人的j进女人的j一区| 99亚洲乱人伦aⅴ精品| www.久久.com| 黄色成人av网站| 日韩精品1区2区3区| 欧美天堂一区| 亚洲激情网址| 欧美成年网站| 美女免费视频一区二区| 免费人成精品欧美精品| 日本电影一区二区| 亚洲精品影院在线观看| 欲香欲色天天天综合和网| 亚洲第一毛片| 天堂av一区二区三区在线播放| 国产精品天堂蜜av在线播放| 亚洲免费婷婷| 久久久精品性| 欧美久久一区二区三区| 精品视频一区二区三区四区五区| 成人aaaa| 国产成人在线中文字幕| 欧美激情麻豆| 欧美不卡高清一区二区三区| 好看的日韩av电影| 91精品啪在线观看国产手机| 青青草精品视频| 人人草在线视频| 天天天综合网| 精品久久ai| 精品中文在线|