加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产一区日韩一区| 麻豆精品新av中文字幕| 精品美女视频| 在线国产欧美| 在线亚洲人成| 综合av在线| 国产免费av国片精品草莓男男| 韩国精品视频在线观看| 久久国产精品99国产| 成人午夜av| 日韩avvvv在线播放| 亚洲人成免费| 先锋影音一区二区| 男女男精品视频网| 九九久久电影| 欧美亚视频在线中文字幕免费| 午夜性色一区二区三区免费视频| 欧美特黄aaaaaaaa大片| 中日韩男男gay无套| 久久久人人人| 97色成人综合网站| 啪啪亚洲精品| 欧美日韩亚洲一区三区| 福利一区视频| 日韩国产激情| 色乱码一区二区三区网站| 91精品99| 亚洲网站啪啪| 色愁久久久久久| 精品一区电影| 国产日韩一区二区三免费高清| 一区二区蜜桃| 日本视频中文字幕一区二区三区| 99热播精品免费| 午夜不卡影院| 四季av一区二区凹凸精品| 国产手机视频一区二区| 2023国产精品久久久精品双| 99久久九九| 精品亚洲免a| 人人狠狠综合久久亚洲婷婷| 日韩欧美中文字幕一区二区三区| 国产美女视频一区二区| 宅男噜噜噜66国产精品免费| 日日摸夜夜添夜夜添精品视频| 欧美二三四区| 九九精品调教| www.久久| 久久精品国产亚洲a| 99久久精品一区二区成人| 欧美aa在线观看| 欧美二三四区| 成人mm视频在线观看| 国产 日韩 欧美一区| 亚洲成人不卡| 久久亚洲精品中文字幕| 深夜福利亚洲| 日韩精品高清不卡| 麻豆精品一二三| 高清久久精品| 亚洲人成亚洲精品| 日韩福利视频导航| 9国产精品午夜| 欧美午夜寂寞| av亚洲免费| 免费中文字幕日韩欧美| 手机在线电影一区| 日日夜夜天天综合| 国产日韩1区| 在线看片欧美| 999精品视频在线观看| 国产精品手机在线播放 | 不卡一区综合视频| 日韩一级免费| 蜜臀av一区二区在线免费观看| 97久久视频| av成人在线观看| 欧美日韩亚洲一区二区三区在线| 9999在线精品视频| 日韩三级网址| 欧洲视频一区| 欧美hd在线| 美日韩一级片在线观看| 欧美三级一区| 欧美综合自拍| 香蕉久久夜色精品| 精品免费av一区二区三区| 亚洲精品极品| 日韩高清一区| 欧美精品一区二区三区精品| 日韩影院在线观看| 播放一区二区| 95精品视频| 日韩精品一区二区三区免费观影| 美女网站一区| 人在线成免费视频| 日本免费新一区视频| 精品国产亚洲一区二区三区| 欧美偷拍综合| 欧美激情国产在线| 日精品一区二区三区| 日韩影视高清在线观看| 欧美福利专区| 都市激情亚洲综合| 国产精品第十页| 国产美女撒尿一区二区| 亚洲综合丁香| 久久精品首页| 99久热这里只有精品视频免费观看| 国产电影一区二区在线观看| 欧美成人黑人| 亚洲青青一区| 免费av一区| 中文另类视频| 久久精品免视看国产成人| 亚欧美无遮挡hd高清在线视频| 亚洲天堂一区二区| 日韩最新在线| 午夜在线a亚洲v天堂网2018| 一区二区三区四区五区在线| 日韩亚洲精品在线观看| 噜噜噜久久亚洲精品国产品小说| 久久精品国产99国产精品| 成人午夜大片| 黄色在线免费观看网站| 欧洲一区在线| 伊人久久亚洲美女图片| 99精品视频网| 久久久久国产精品一区二区 | 天使萌一区二区三区免费观看| 欧美激情三区| 久久久久蜜桃| 欧美成人xxxx| 久久狠狠一本精品综合网| 久久夜夜操妹子| 超碰成人免费| 日韩欧美一区二区三区免费看| 国产麻豆精品久久| 黄色精品网站| 日本美女一区二区三区视频| 亚洲调教视频在线观看| 99精品国产在热久久| 久久亚洲在线| 日韩成人精品一区二区三区| 久久三级福利| 美女网站视频久久| 免费观看久久av| 欧美日韩一视频区二区| 精品日本12videosex| 欧美在线1区| 国产在线欧美| 亚洲欧美在线专区| 好看的日韩av电影| 欧美激情麻豆| 在线一区视频| 日本欧美韩国国产| 超碰aⅴ人人做人人爽欧美| 亚洲宅男一区| 牛牛精品一区二区| 少妇一区二区三区| 日本一区中文字幕| 91久久综合| 国产欧美日韩视频在线| 97视频精品| 黄色网一区二区| 日日夜夜免费精品视频| 中文在线一区| 精品三级国产| av成人在线播放| 日韩一区二区免费看| 国产影视一区| 日韩国产一区二区| 香蕉视频一区二区三区| 欧美激情五月| 亚洲人成午夜免电影费观看| 热久久天天拍国产| 日本女优在线视频一区二区| 噜噜噜在线观看免费视频日韩| 精品国产亚洲一区二区三区大结局| 深夜成人福利| 亚洲精品va| 久久伊人影院| 毛片不卡一区二区| 视频一区中文字幕国产| 人人狠狠综合久久亚洲婷婷| 日本sm残虐另类| 人人草在线视频| 香蕉av一区二区| 一区二区三区在线免费看| 国产欧美日韩亚洲一区二区三区| 999亚洲国产精| 欧美高清视频看片在线观看| 欧美日韩亚洲国产精品| 香蕉伊大人中文在线观看| 国产一区二区三区四区三区四| 精品一区二区三区中文字幕视频| 日韩精品免费观看视频 | 鲁大师影院一区二区三区| 国内精品麻豆美女在线播放视频| 日韩高清国产一区在线|