加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS444 Linear classifiers

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
  • 下一篇:代寫5614. C++ PROGRAMMING
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本精品不卡| 欧美a大片欧美片| 欧美xxxx做受欧美护士| 久久激情电影| 亚洲人成亚洲精品| 日本免费一区二区三区等视频| 最新亚洲激情| 久久精品99国产精品日本| 99国产精品视频免费观看一公开 | 欧美69视频| 国产三级一区| 日韩精品一区二区三区免费观看| 免费福利视频一区二区三区| 欧美99在线视频观看| 国产精品s色| 少妇一区视频| 亚洲小说区图片区| 国产精品xvideos88| 91九色精品| 欧美视频二区欧美影视| 国产精品久久久久久久久久10秀| 欧美精品一区二区久久| 黄色网一区二区| 亚洲都市激情| 久久久久97| 蜜臀久久久99精品久久久久久| 亚洲免费观看高清完整版在线观| 久久国产婷婷国产香蕉| 午夜国产欧美理论在线播放 | 日本美女久久| 欧美hd在线| 久久三级视频| 国产精品红桃| 美女视频黄 久久| 欧美日韩在线精品一区二区三区激情综合| 久久青草久久| 极品一区美女高清| 日本不卡在线视频| 国产精品久久久久毛片大屁完整版 | 国产精品va| 久久这里有精品15一区二区三区| 亚洲免费网址| 黄色成人91| 黄色欧美网站| 国产精品中文字幕制服诱惑| 少妇精品在线| 国产精品红桃| 亚洲深深色噜噜狠狠爱网站| 欧美区一区二| 日本免费久久| 特黄毛片在线观看| 神马午夜在线视频| 好看的亚洲午夜视频在线| 欧美性感美女一区二区| 在线视频亚洲专区| 日韩va亚洲va欧美va久久| 欧美一区免费| 色综合色综合| 99国产精品久久久久久久| 91精品国产自产在线丝袜啪| 色播一区二区| 成人三级视频| 99久久婷婷这里只有精品| 午夜免费一区| 亚洲主播在线| 97偷自拍亚洲综合二区| 午夜免费一区| 久久福利毛片| 91精品99| 精品国产一区二区三区2021| 亚洲婷婷伊人| av在线不卡精品| 久久精品国产77777蜜臀| 麻豆精品一区二区| 99蜜月精品久久91| 黄视频免费在线看| 日韩毛片一区| 综合激情婷婷| 午夜视频一区二区在线观看| 国产精品一区二区精品| 日韩精品欧美精品| 国产69精品久久久久按摩| 日本伊人午夜精品| 九九九精品视频| 欧美国产大片| 亚洲精品美女| 日韩高清一区在线| ww久久综合久中文字幕| 亚洲女色av| 99精品国产在热久久| 精品一区二区三区中文字幕在线 | 亚洲国产三级| 日韩欧美国产大片| 国产精品视频一区二区三区| jizz性欧美23| 精品国产精品| 91精品推荐| 久久精品国内一区二区三区水蜜桃| 婷婷伊人综合| 91久久综合| 日本国产一区| 国产探花一区| 欧美二区不卡| 亚洲激情成人| 福利一区二区三区视频在线观看| 国产一区二区三区探花| 国产一区二区精品福利地址| 91精品国产调教在线观看| 四季av一区二区三区免费观看| 日韩高清在线不卡| 亚洲一级淫片| 亚洲瘦老头同性70tv| 91久久电影| 久久亚洲综合| 日韩国产成人精品| 一区二区三区午夜视频| 国产精品亚洲欧美一级在线 | 天堂美国久久| 男人的天堂亚洲在线| 免费日本视频一区| 麻豆精品在线看| 一区二区三区在线| 久久av免费| 亚洲大全视频| 免费视频一区二区| 亚洲www免费| 日韩高清一级片| 成人午夜国产| 欧洲av不卡| 国产精品va| 日韩欧美久久| 亚洲永久字幕| www成人在线视频| 麻豆国产精品视频| 99久久久久| 蜜臀av性久久久久蜜臀aⅴ| 午夜欧美激情| 国产精品国码视频| 中文字幕视频精品一区二区三区| 91精品国产自产在线观看永久∴ | 国产网站在线| 久久91导航| 综合视频在线| 91精品尤物| 午夜国产精品视频免费体验区| 日本中文字幕视频一区| 精品成人自拍视频| 视频一区在线免费看| 999久久久精品一区二区| 婷婷亚洲综合| 日韩免费av| 中文字幕亚洲综合久久五月天色无吗''| 99久久激情| 日本vs亚洲vs韩国一区三区二区| 日韩精品一区二区三区中文字幕 | 91精品观看| av一区在线播放| 久久久精品久久久久久96 | 希岛爱理一区二区三区| 国产精品v一区二区三区| 一本久久综合| 亚洲天堂导航| 亚洲人成精品久久久| 国产精品毛片一区二区在线看| 精品国产亚洲一区二区三区大结局| 黄色在线观看www| 一区二区影院| 国产精品99一区二区| 中文字幕在线高清| 六月丁香久久丫| 日韩精品成人一区二区在线| 欧美精品一卡| 日韩精品福利一区二区三区| 欧美特黄a级高清免费大片a级| 蜜臀久久精品| 欧美性感美女一区二区| 91成人精品观看| 九九久久婷婷| 少妇一区二区视频| 在线看片不卡| 日韩国产在线一| 亚洲欧美卡通另类91av| 日本午夜精品视频在线观看| 久久久久午夜电影| 91精品国产一区二区在线观看 | а天堂中文最新一区二区三区| 人人狠狠综合久久亚洲| 秋霞欧美视频| 亚洲午夜精品一区二区国产 | 国产在线播放精品| 国产精品v日韩精品v欧美精品网站| 男人的天堂久久精品| 嫩草国产精品入口| 午夜性色一区二区三区免费视频| 亚洲天堂偷拍| 久久天堂久久| 男人天堂视频在线观看| 九一精品国产| 99综合99| 精品久久在线|