加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫(xiě)5614. C++ PROGRAMMING

時(shí)間:2024-02-29  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
代寫(xiě) 5614. C++ Programming-留學(xué)生作業(yè)幫 (daixie7.com)


請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:代寫(xiě)CS444 Linear classifiers
  • 下一篇:莆田鞋官方正品入口,這十個(gè)官方入口必須收藏
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶(hù)要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
    合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    日本久久综合| 日本午夜精品一区二区三区电影| 国产精品美女在线观看直播| www.一区| 蜜臀久久99精品久久久久久9 | 一区二区三区日本视频| 欧美黄色录像片| 国产精品亚洲二区| 99亚洲伊人久久精品影院| 亚洲精品中文字幕乱码| 欧美2区3区4区| 亚洲九九精品| 九色porny自拍视频在线观看| 久久中文字幕av一区二区不卡| 国产成人三级| 99精品国产在热久久婷婷| 久久午夜精品| 欧美1区2区| 成人综合久久| 亚洲综合福利| 一区二区三区午夜视频| 主播大秀视频在线观看一区二区| 免费日韩av| 亚洲午夜精品久久久久久app| 亚洲制服欧美另类| 在线免费观看亚洲| 国产欧美一区二区三区国产幕精品| 免费成人在线影院| 亚洲国产不卡| 欧美日韩水蜜桃| 黄色美女久久久| 日韩电影在线观看一区| 国产精品videosex极品| 美日韩一区二区| 美女色狠狠久久| 亚洲精品国产精品国产| 快she精品国产999| 欧美日韩视频| 五月天久久网站| 激情自拍一区| 91精品亚洲| 开心激情综合| 美女网站色精品尤物极品姐弟| 日韩一区网站| 日韩激情毛片| 欧美女优在线视频| 国产一区精品二区| 影音先锋日韩在线| 一区二区中文字| av一级久久| 国产精品分类| 欧美激情综合| 国产精品视频一区二区三区综合| 日韩综合小视频| 免费高清视频精品| 蜜桃视频一区二区三区在线观看 | 亚洲一级一区| 激情亚洲网站| 波多野结衣一区| 好吊日精品视频| 欧美日韩国产一区精品一区| 国产国产精品| 尤物精品在线| 丝袜a∨在线一区二区三区不卡 | 蜜桃久久av一区| 美国毛片一区二区三区| 黄在线观看免费网站ktv| 欧美激情欧美| 肉色欧美久久久久久久免费看| 欧美日韩国产观看视频| 日韩在线不卡| 久久一综合视频| 欧美亚洲自偷自偷| 久久精品国产大片免费观看| 蜜臀久久99精品久久久久久9| 蜜臀va亚洲va欧美va天堂| 欧美hd在线| 88xx成人免费观看视频库| 欧美天堂在线| 粉嫩av一区二区三区四区五区| 精品福利在线| 国产精品www.| 日本一区二区三区播放| 牛牛精品成人免费视频| 欧美精品一区二区久久| 性一交一乱一区二区洋洋av| 伊人久久国产| 青青青伊人色综合久久| 国内不卡的一区二区三区中文字幕| 国产一区二区三区四区五区传媒| 日韩中文一区二区| 国产一区二区中文| 久久不见久久见中文字幕免费| 美女视频免费精品| 婷婷综合视频| 黄色在线观看www| 亚洲精品韩国| 日韩二区三区四区| 蜜桃视频欧美| 激情国产在线| 欧美日韩伊人| 国产一区调教| 首页国产欧美日韩丝袜| 91欧美精品| 亚洲小说图片| 欧美另类69xxxxx| 日韩欧美1区| 久久夜色电影| 中文字幕中文字幕精品| 免费成人你懂的| 国产日韩免费| 一区二区三区视频播放| 国产精品入口| 99精品视频网| 9999久久久久| 午夜亚洲福利在线老司机| 99欧美精品| 日韩av成人高清| 日本欧美三级| 欧美在线色图| 91久久夜色精品国产按摩| 欧美日韩亚洲一区| 亚洲国产中文在线| 亚洲美女视频在线免费观看 | 亚洲精品麻豆| 国产精品2023| 91精品国产乱码久久久久久久| 国产精品毛片在线| 日本女人一区二区三区| 日韩不卡在线视频| 欧美日韩激情在线一区二区三区| 色综合咪咪久久网| 另类欧美日韩国产在线| 欧美日韩一区二区三区不卡视频| 一本色道久久综合一区| 国产一区高清| 香蕉成人app| 99热这里只有成人精品国产| 日日夜夜一区二区| 国产91精品入| 91一区二区| 国产精品手机在线播放| 在线视频观看日韩| 午夜精品成人av| 久久久精品区| 国产亚洲精品bv在线观看| 久久永久免费| 久久久久亚洲| 免费在线小视频| 日韩av网站在线观看| 在线一区免费观看| 青草国产精品久久久久久| 国产精品久久久久av蜜臀 | 蜜桃视频一区| 久久中文字幕导航| 欧美日韩一二| 久久精品国产免费| 久久成人福利| 亚欧成人精品| 欧美丝袜一区| 日韩欧美大片| 国产精品15p| 日韩高清成人| 99久久99视频只有精品| 香蕉视频亚洲一级| 久久精品国语| 激情aⅴ欧美一区二区欲海潮| 日本人妖一区二区| av日韩中文| 日韩中文字幕视频网| 美女一区网站| 国产成人在线中文字幕| 99精品国产一区二区青青牛奶| 久久亚洲精选| 你懂的国产精品| 亚洲国产日韩欧美在线| 韩国三级一区| 亚洲小说区图片区| 亚洲人人精品| 亚洲一区图片| 日本亚洲最大的色成网站www| 日韩成人亚洲| 久久密一区二区三区| 免费成人性网站| 91成人精品在线| 欧美二三四区| 亚洲激情不卡| 最新国产一区| 免费成人在线观看视频| 精品亚洲a∨一区二区三区18| 国产高潮在线| 日韩在线黄色| 欧美视频免费看| 在线一级成人| 久久久人成影片免费观看| 一区二区在线影院| 国产精品传媒精东影业在线 | 肉肉av福利一精品导航| av不卡在线| 视频国产精品|