加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP52715 代做、代寫 Python設計編程

時間:2024-04-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP52715 Deep Learning for Computer Vision & Robotics (Epiphany Term, 202**4)
Summative Coursework - 3D PacMan
Coursework Credit - 15 Credits Estimated Hours of Work - 48 Hours Submission Method - via Ultra
Release On: February 16 2024 (2pm UK Time)
Due On: March 15 2024 (2pm UK Time)
– All rights reserved. Do NOT Distribute. –
  Compiled on November 16, 2023 by Dr. Jingjing Deng

1
1.
2.
3.
4.
5.
6.
Coursework Specification
This coursework constitutes **% of your final mark for this module, where there are two mandatory tasks: Python programming and report writing. You must upload your work to Ultra before the deadline specified on the cover page.
The other 10% will be assessed separately based on seminar participation. There are 3 seminar sessions in total, the mark awarding rule is as such: (A) participating in none=0%, (B) participating in 1 session=2%, (C) participating in 2 sessions=5%, (D) participating in all sessions=10%.
This coursework is to be completed by students working individually. You should NOT ask for help from your peers, lecturer, and lab tutors regarding the coursework. You will be assessed on your code and report submissions. You must comply with the University rules regarding plagiarism and collusion. Using external code without proper referencing is also considered as breaching academic integrity.
Code Submission: The code must be written in Jupyter Notebook with appropriate comments. For constructing deep neural network models, use PyTorch1 library only. Zip Jupyter Note- book source files (*.ipynb), your dataset (if there is any new), pretrained models (*.pth), and a README.txt (code instruction) into one single archive. Do NOT include the original “Pac- Man Helper.py”, “PacMan Helper Demo.ipynb”, “PacMan Skeleton.ipynb”, “TrainingImages.zip”, “cloudPositions.npy” and “cloudColors.npy” files. Submit a single Zip file to GradeScope - Code entry on Ultra.
Report Submission: The report must NOT exceed 5 pages (including figures, tables, references and supplementary materials) with a single column format. The minimum font size is 11pt (use Arial, Calibri, Times New Roman only). Submit a single PDF file to GradeScope - Report entry on Ultra.
Academic Misconduct is a major offence which will be dealt with in accordance with the University’s General Regulation IV – Discipline. Please ensure you have read and understood the University’s regulations on plagiarism and other assessment irregularities as noted in the Learning and Teaching Handbook: 6.2.4: Academic Misconduct2.
            Figure 1: The mysterious PhD Lab.
 1 https://pytorch.org/
2 https://durhamuniversity.sharepoint.com/teams/LTH/SitePages/6.2.4.aspx
1

2 Task Description (**% in total)
2.1 Task 1 - Python Programming (40% subtotal)
In this coursework, you are given a set of 3D point-clouds with appearance features (i.e. RGB values). These point-clouds were collected using a Kinect system in a mysterious PhD Lab (see Figure.1). Several virtual objects are also positioned among those point clouds. Your task is to write a Python program that can automatically detect those objects from an image and use them as anchors to collect the objects and navigate through the 3D scene. If you land close enough to the object it will be automatically captured and removed from the scene. A set of example images that contain those virtual objects are provided. These example images are used to train a classifier (basic solution) and an object detector (advanced solution) using deep learning approaches in order to locate the targets. You are required to attempt both basic and advance solutions. “PacMan Helper.py” provides some basic functions to help you complete the task. “PacMan Helper Demo.ipynb” demonstrates how to use these functions to obtain a 2D image by projecting 3D point-clouds onto the camera image-plane, and how to re-position and rotate the camera etc. All the code and data are available on Ultra. You are encouraged to read the given source codes, particularly “PacMan Skeleton.ipynb”.
Detection Solution using Basic Binary Classifier (10%). Implement a deep neural network model that can classify the image patch into two categories: target object and background. You can use the given images to train your neural network. It then can be used in a sliding window fashion to detect the target object in a given image.
Detection Solution using Advance Object Detector (10%). Implement a deep neural network model that can detect the target object from the image. You may manually or automatically create your own dataset for training the detector. The detector will predict bounding boxes that contain the object from a given image.
Navigation and Collection Task Completion (10%). There are 11 target objects in the scene. Use the trained models to perform scene navigation and object collection. If you land close enough to the object it will be automatically captured and removed from the scene. You may compare the performance of both models.
Visualisation, Coding Style, and Readability (10%). Visualise the data and your experimental results wherever is appropriate. The code should be well structured with sufficient comments for the essential parts to make the implementation of your experiments easy to read and understand. Check the “Google Python Style Guide”3 for guidance.
2.2 Task 2 - Report Writing (50% subtotal)
You will also write a report (maximum five pages) on your work, which you will submit to Ultra alongside your code. The report must contain the following structure:
Introduction and Method (10%). Introduce the task and contextualise the given problem. Make sure to include a few references to previously published work in the field, where you should demon- strate an awareness of the relevant research works. Describe the model(s) and approaches you used to undertake the task. Any decisions on hyper-parameters must be stated here, including motivation for your choices where applicable. If the basis of your decision is experimentation with a number of parameters, then state this.
Result and Discussion(10)%). Describe, compare and contrast the results you obtained on your model(s). Any relationships in the data should be outlined and pointed out here. Only the most important conclusions should be mentioned in the text. By using tables and figures to support the section, you can avoid describing the results fully. Describe the outcome of the experiment and the conclusion that you can draw from these results.
Robot Design (20%). Consider designing an autonomous robot to undertake the given task in the real scene. Discuss the foreseen challenges and propose your design, including robot mechanic configuration, hardware and algorithms for robot sensing and controlling, and system efficiency etc. Provide appropriate justifications for your design choices with evidence from existing literature. You may use simulators such as “CoppeliaSim Edu” or “Gazebo” for visualising your design.
3 https://google.github.io/styleguide/pyguide.html
2
 
Format, Writing Style, and Presentation (10%). Language usage and report format should be in a professional standard and meet the academic writing criteria, with the explanation appropriately divided as per the structure described above. Tables, figures, and references should be included and cited where appropriate. A guide of citation style can be found at library guide4.
3 Learning Outcome
The following materials from lectures and lab practicals are closely relevant to this task:
1. Basic Deep Neural Networks - Image Classification.
2. Generic Visual Perception - Object Detection.
3. Deep Learning for Robotics Sensing and Controlling - Consideration for Robotic System Design.
The following key learning outcomes are assessed:
1. A critical understanding of the contemporary deep machine learning topics presented, and how these are applicable to relevant industrial problems and have future potential for emerging needs in both a research and industrial setting.
2. An advanced knowledge of the principles and practice of analysing relevant robotics and computer vision deep machine learning based algorithms for problem suitability.
3. Written communication, problem solving and analysis, computational thinking, and advanced pro- gramming skills.
The rubric and feedback sheet are attached at the end of this document.
 4 https://libguides.durham.ac.uk/research_skills/managing_info/plagiarism 3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:菲律賓申請中國探親簽證流程 入華探親簽辦理材料
  • 下一篇:EEE-6512 代寫、代做 java/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产美女亚洲精品7777| 99久久久国产精品免费调教网站| 亚洲a级精品| av资源中文在线| 欧美色婷婷久久99精品红桃| 国产亚洲字幕| 日韩毛片一区| 每日更新成人在线视频| 国产主播性色av福利精品一区| 亚洲乱码视频| 日韩和的一区二在线| 国产午夜精品一区二区三区欧美| 国产精品丝袜在线播放| 国产精品一区二区美女视频免费看| 天堂av在线| 亚洲一区自拍| 免费国产自久久久久三四区久久 | 日产午夜精品一线二线三线| 欧洲精品一区| 日本一区福利在线| 国产精品啊啊啊| 欧美日韩国产网站| 国产不卡123| 午夜亚洲性色福利视频| 蜜桃成人av| 色天天色综合| 超碰在线一区| 婷婷视频一区二区三区| 精品一区二区三区亚洲| 麻豆成人久久精品二区三区红| 青青草国产一区二区三区| 视频一区在线播放| 亚洲一区二区三区高清| 伊人青青综合网| 在线日本制服中文欧美| 激情小说亚洲色图| eeuss鲁片一区二区三区| 国产成人调教视频在线观看| 国产精品激情电影| 美女视频一区二区| 国产精品传媒麻豆hd| 亚洲a∨精品一区二区三区导航| 一区在线免费| 亚洲韩日在线| 久久国产精品亚洲人一区二区三区| 国产精品美女在线观看直播| 日本高清精品| 日韩欧美激情电影| 日韩在线成人| 亚洲国产一区二区三区网站| 久久精品一级| 免费一级欧美片在线观看网站| 日韩成人一区二区| 蜜桃精品一区二区三区| 成人h动漫精品一区二区器材| av成人综合| 丁香婷婷成人| 91精品推荐| 欧美ab在线视频| 羞羞色午夜精品一区二区三区| 亚洲国产成人精品女人| 亚洲精品在线观看91| 妖精视频成人观看www| 国产女优一区| 欧美激情欧美| 日本国产亚洲| 麻豆精品国产传媒mv男同| 欧美激情偷拍| 亚洲精品3区| 精品国产三区在线| 成人毛片在线| 亚洲激情偷拍| 欧美hentaied在线观看| 亚洲va中文在线播放免费| 久久精品国产亚洲a| 欧美精品国产一区二区| 先锋影音国产精品| 美女午夜精品| 婷婷久久一区| av中文字幕在线观看第一页| 成人h在线观看| 国产精品国码视频| 日韩精品成人| 香蕉精品久久| 日韩av片子| 久热成人在线视频| 奇米亚洲欧美| 精品大片一区二区| 亚洲少妇自拍| 天堂综合在线播放| 成人在线日韩| 欧美私人啪啪vps| 在线一区视频| 九色porny丨国产首页在线| 日本aⅴ亚洲精品中文乱码| 久久爱www.| 在线电影一区二区| 亚洲天堂导航| 伊人久久综合网另类网站| 亚洲国产欧美在线观看| 悠悠资源网久久精品| 欧美国产大片| 国产一区二区三区精品在线观看| 97视频一区| 三级欧美在线一区| 美女视频网站久久| 911亚洲精品| 亚洲免费黄色| 99久久婷婷国产综合精品首页 | 亚洲三级免费| 大伊香蕉精品在线品播放| 亚洲一区二区三区四区五区午夜| 婷婷久久综合九色综合99蜜桃| 国产成人一区二区三区影院| 欧洲美女日日| 国产精品第一| 亚洲国产中文在线二区三区免| 国产亚洲在线观看| 日韩精品电影在线| 国产一区二区三区亚洲| 蜜桃av一区二区三区| 你懂的亚洲视频| 国产99久久精品一区二区300| 色综合桃花网| 亚洲国产精品嫩草影院久久av| re久久精品视频| 国产精品亚洲成在人线| 综合激情五月婷婷| 日韩av在线中文字幕| 国产成人影院| 老鸭窝亚洲一区二区三区| 在线精品亚洲| **女人18毛片一区二区| 久久精品国产亚洲一区二区三区| av日韩精品| 日韩欧美高清| 高清日韩中文字幕| 国模精品视频| 日韩欧美黄色| 欧美r级电影| 日韩有码一区| 免费成人av资源网| 天堂俺去俺来也www久久婷婷| 日韩中文欧美在线| 国产不卡一区| 欧美gayvideo| theporn国产在线精品| 在线最新版中文在线| 精品欧美视频| 日韩电影二区| 欧美韩一区二区| 97成人超碰| 1024成人| 欧美激情一区| 国产精品国产三级国产在线观看| 日韩深夜影院| 精精国产xxxx视频在线野外| 精品久久久亚洲| 国产精品久久久久久模特| 不卡日本视频| 国产精一区二区| 国产高清不卡| 加勒比视频一区| 久久精品国产网站| 最新日韩在线| 日韩av一区二区三区四区| 欧美gv在线观看| 亚洲一级二级| 国产欧美日韩视频在线| 成人片免费看| 久久久久久久久国产一区| 日本sm残虐另类| 蜜桃视频在线观看一区| 91欧美极品| 久久伊人亚洲| 丝袜美腿亚洲综合| 国语一区二区三区| 国产欧美一级| 亚洲欧美日韩国产一区| 亚洲精品在线a| 久久在线精品| 蜜桃传媒麻豆第一区在线观看| 福利电影一区| 午夜亚洲福利| 日本在线高清| 一本一道久久综合狠狠老 | 99视频这里有精品| 伊人久久av| 亚洲成人免费| 1204国产成人精品视频| 羞羞视频在线观看欧美 | 国产字幕视频一区二区| 亚欧日韩另类中文欧美| 亚洲成人不卡| 国产亚洲毛片| 99久久99热这里只有精品| 亚洲区小说区图片区qvod按摩| 播放一区二区| 视频一区中文字幕| 伊人久久综合影院|