加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲小少妇裸体bbw| 91精品国产自产拍在线观看蜜| 欧美gayvideo| 久久av国产紧身裤| 亚洲日韩成人| 亚洲黄色免费av| 激情偷拍久久| 日本中文字幕在线一区| av成人在线看| 免费在线观看一区二区三区| 嫩草国产精品入口| 国产精品成人**免费视频| 免费毛片b在线观看| 精品91久久久久| 成人中文视频| 欧美三级一区| 青青草国产成人av片免费| 97精品视频| 日韩视频不卡| 成人羞羞视频播放网站| 亚洲国产欧美日韩在线观看第一区 | 美日韩黄色大片| 91麻豆精品国产综合久久久| 91精品国产经典在线观看| 视频一区视频二区中文字幕| 欧美成人日韩| 精品色999| 日韩欧美中文字幕一区二区三区| 影音先锋亚洲电影| 国产精品xxx| 免费v片在线观看| 蜜桃视频在线观看一区| 日韩香蕉视频| 久久美女精品| 欧美亚视频在线中文字幕免费| 日韩高清影视在线观看| 国产精品久久久久久av公交车| 国产精品久久久久久模特| 国产综合色在线观看| 超碰一区二区| 国产精品yjizz视频网| 久久xxxx| 鲁大师成人一区二区三区| 亚洲精品成人无限看| 久久综合av| 久久中文视频| 99久久夜色精品国产亚洲狼| 清纯唯美亚洲综合一区| 欧美视频久久| 国产精品色在线网站| avtt综合网| 色妞ww精品视频7777| 日韩成人在线看| 日韩精品一区国产| 精品视频在线播放一区二区三区| 国产成人1区| 五月天亚洲一区| 日本一区二区乱| 风间由美中文字幕在线看视频国产欧美| 日本亚洲免费观看| 黄色欧美网站| 久久人人99| 伊人久久大香线蕉av超碰演员| 亚洲精品成人影院| 香蕉亚洲视频| 中文在线а√天堂| 欧美一级免费| 亚洲三级免费| 最新国产一区| 99精品国产一区二区三区2021| 欧美大奶一区二区| 欧美大片一区| 老鸭窝91久久精品色噜噜导演| 国产精品成人a在线观看| 久久久久久自在自线| 免费高清在线视频一区·| 久久亚洲综合| 亚洲www啪成人一区二区| 国产一区二区久久久久| 日韩精品一区二区三区av| 日韩中文视频| 国产精品亚洲综合久久| 日韩国产欧美视频| 999色成人| 一区二区在线视频观看| 大型av综合网站| 欧美一区自拍| 91精品亚洲| av亚洲在线观看| 91久久精品无嫩草影院| 精品国产成人| 欧美伦理在线视频| 快she精品国产999| 激情aⅴ欧美一区二区欲海潮| 日本免费一区二区三区四区| 久久国产欧美日韩精品| 欧美激情综合| 国产欧美高清| 超碰成人在线观看| 亚洲福利精品| 亚洲男女自偷自拍| 美女91在线看| 久久精品五月| 国产一区日韩| 久久精品国产亚洲5555| 在线成人激情| 爽成人777777婷婷| 一级成人国产| 国产探花在线精品| 久久久综合网| 久久久噜噜噜| 日韩精品一区二区三区免费观影 | 91精品国产一区二区在线观看 | 免费不卡在线观看| 亚洲精品国产嫩草在线观看 | 一区二区亚洲| 日韩激情在线| 成人免费91| 精品国精品国产自在久国产应用| 99久久99视频只有精品| 久草在线资源福利站| 欧美亚洲自偷自偷| 日本一区二区三区播放| 蜜臀久久99精品久久一区二区| 蜜桃av一区二区三区| 91欧美精品| 国产探花一区| 久久一区91| 美女91在线看| 成人精品在线| 亚洲午夜精品久久久久久app| 蜜臀av一区二区三区| 欧美日本免费| 偷拍自拍亚洲色图| 视频一区二区三区入口| 美女精品一区二区| 第一区第二区在线| 美女黄色成人网| 日本视频一区二区| 一区二区三区自拍视频| 蜜桃a∨噜噜一区二区三区| 四虎地址8848精品| 日韩激情av在线| 亚洲美女少妇无套啪啪呻吟 | 日韩精品dvd| 国产一区二区三区不卡视频网站| 久久久久蜜桃| 另类激情亚洲| 亚洲人成亚洲精品| 亚洲综合精品四区| 欧美a级理论片| 麻豆视频一区| 欧洲一区二区三区精品| 99久久久成人国产精品| 国产精品美女久久久| 一区二区日韩免费看| 欧美日韩一本| 日韩欧美一区二区三区免费看| 亚洲肉体裸体xxxx137| 影音先锋久久| 国产在视频线精品视频www666| 欧美日韩国产一区二区三区不卡| 日本久久二区| 青青操综合网| 日本精品在线一区| 精品视频亚洲| 精品三区视频| 精品99在线| 国产一区二区三区| 秋霞影院一区二区三区| 日本在线中文字幕一区二区三区 | 日韩不卡视频在线观看| 精品国产欧美日韩| 快播电影网址老女人久久| 成人h动漫免费观看网站| 日韩久久综合| 久久精品色综合| 亚洲a成人v| 欧美精品一二| 日韩经典一区二区| 成人av观看| 老司机精品在线| 一级成人国产| 亚洲欧美久久| 群体交乱之放荡娇妻一区二区| www.一区| 婷婷综合网站| 国产精品一级在线观看| 免费人成黄页网站在线一区二区| 影音先锋亚洲精品| 国产福利电影在线播放| 精品国产91久久久久久浪潮蜜月| 先锋影音一区二区| 天天天综合网| 国产欧美日韩精品高清二区综合区| 国产精品久久久久久久久久10秀| 麻豆视频一区| 亚洲综合激情在线| 中文字幕日本一区二区| 久久aⅴ国产紧身牛仔裤|