加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫MMME4056、代做MATLAB編程設計
代寫MMME4056、代做MATLAB編程設計

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ESSENTIAL INFORMATION
MODULE CODE MODULE TITLE ASSESSMENT TYPE
MMME4056 Integrated Systems 
Analysis
Simulink and Report
COURSEWORK TITLE WEIGHT (INDICATIVE EFFORT)
MMME4056, ISA 2024, COURSEWORK 30% (Approx. 10-15
hrs)
SUBMISSION DATE SUBMISSION TIME SUBMISSION METHOD
15/11/2024 15:00 Moodle
FEEDBACK DETAILS
Feedback will be provided within 20 working days and will consist of an individual feedback 
form. Please note the marks released on Moodle are raw. If you have made a late submission 
and it is not covered by an EC or an accommodation then the deductions will be made when I 
submit the marks to the board after the exams. 
LEARNING OUTCOMES ASSESSED (IN BOLD)
1. Demonstrate an understanding of the concept of system behaviour and the design of 
experiments for characterising system components. - AHEP4: 2, 6 
2. Critically evaluate and analyse complex dynamic systems behaviour using an 
appropriate numerical or analytical methodology - AHEP4: 1, 2, 3, 6 
3. Evaluate the reliability of the separable system components, coupled system 
components and systems as a whole - AHEP4: 6, 9
SUBMISSION REQUIREMENTS
• This exercise constitutes 30% of the total course mark and is marked out of 100. 
Marks for individual sections are indicated for that section.
• Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the 
coursework report itself (as a pdf document) and all files that you used in the CW. 
Please adopt the file-naming suggested in this coursework specification. More details 
about ‘WHAT TO SUBMIT’ can be found in the ASSESSMENT DETAILS.
• It must be possible to open the SIMULINK models submitted using MATLAB release 
R2023 or later. Models presented in different releases that cannot be opened will not
be marked. 
• Your report should not exceed 20 pages including the cover page, references, and 
appendixes.
• Your Coursework should have a front page which will have your name and student 
number.
• Text elements should be typed. Ideally in Arial 11 point.
• Drawings and figures must be made by computer. Drawings and figures may not be 
copied from the internet. In ALL cases they should be appropriately titled and 
captioned. The titles and captions should be clear and legible. 
• You may not discuss the details of your answers with other students. Software checks 
will be made to ensure no copying or plagiarism has occurred.
• Whenever you talk about someone else’s work (including journal papers, books, 
conference papers, technical reports, theses/dissertations, websites, etc.) if necessary,
you must include a reference to the original source of this information. You should use 
the IEEE referencing style for your report. 
MMME4056... Integrated Systems Analysis
COURSEWORK 
SYSTEM DESCRIPTION.
Figure 1 shows a floating wind turbine of spar-buoy type. These floating 
supports for wind turbines achieve stability by having a centre of mass 
below the centre of buoyancy (i.e. the centre of gravity of the displaced 
water).
Spar-buoy floating arrangements are considered by some to be suitable for 
very deep water. They are relatively compliant in “pitch”. That is to say, 
when the wind blows and exerts a downwind thrust force on the rotor of 
the wind turbine, the entire structure rocks backwards a little bit. As the 
structure is moving backwards relative to the oncoming wind, the relative 
wind speed reduces and so a coupling arises between the thrust force, F(t), 
acting on the turbine and the angle of tilt, (t), of the platform. This 
coursework is based on modelling the dynamics of such a floating wind 
turbine platform and applying the methods taught within MMME4056.
The downwind thrust on a wind turbine rotor is not a simple function of 
the wind speed, v(t). Every modern wind turbine has a particular fixed 
rated wind speed vrated. For wind speeds lower than the rated wind speed 
(v(t) < vrated), the turbine controller tries to extract the maximum available 
power from the air and this results in a downwind thrust that is 
proportional to the square of the wind speed, 𝐹(w**5;) = 𝑎 × w**7;(w**5;)
2
. By 
contrast, for wind speeds higher than the rated wind speed (v(t) > vrated), 
the turbine is not able to absorb all of the power available and the 
controller must deliberately spill some power by pitching the blades 
suitably. This results in a different downwind force relationship …
𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;(w**5;). Figure 2 below shows a typical relationship 
between wind speed and the downwind thrust force acting on a wind turbine. 

q
Fig. 1: A Spar-buoy floating 
 wind turbine support
F
H
Fig. 2: Downwind thrust vs. (relative) wind speed.
vrated
Vcut-out
Wind speed, v →
Downwind thrust, F

OVERALL REQUIREMENTS
The requirement of this coursework is to understand this floating wind turbine as a simple dynamic system, to 
simulate its behaviour as wind-speed changes using SIMULINK and to analyse its behaviour at two different 
equilibrium states using methods taught in the course. 
The submission should be based on what is explicitly asked for in this coursework specification. The primary 
material being marked is a report – although you are asked to submit your SIMULINK models also. It must be 
possible to open the SIMULINK models submitted using the version of MATLAB presently installed on 
University computers. Models prepared in more modern releases will not be marked. 
There are no additional marks for long reports!
FILES PROVIDED TO YOU – AND WHAT THEY DO.
CW_Spec.docx : This file. It contains the coursework specification.
f_diesel.m : A MATLAB function not directly related to this coursework but supplied to help illustrate 
how a SIMULINK model can call a MATLAB function.
f_thrust.m : An MATLAB function that is not complete. You should complete this function by 
modifying each line of code carrying the comment % Modify this line
In some cases, the modification simply involves you inserting the appropriate 
numerical values. In the remaining cases, you should insert the correct formula.
sim_diesel.slx : A SIMULINK model calling the function f_diesel.m. 
As well as showing how to call an Interpreted MATLAB Function in SIMULINK,
this also shows how to transfer data into the MATLAB workspace so that you can 
obtain plots using MATLAB directly.
stud_data.xls : An EXCEL spreadsheet containing one unique row of data for each student. 
Each row contains (in this order) … {vrated, a, J, k, c, H, p, q…}
start_here.m : A MATLAB script. This opens up a SIMULINK model of the diesel engine only, 
(<sim_diesel.slx>) and then runs the model and plots both  and &#***3; vs. time. You might
choose to copy and then modify this so as to use it as a way to open and run your own
SIMULINK model. You can run <start_here.m> either by clicking the big green 
arrowhead in the top toolbar of the editor or else by just typing >>start_here 
at the MATLAB command prompt).
WHAT TO SUBMIT
Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the coursework report itself (as a 
WORD or PDF document) and all files that you used in the CW. 
IMPORTANT: Please make clear on the first page of the report which student you are by identifying which 
Student ID# (SID# in the spreadsheet) applies to you (a number less than 401). If, for some reason, you do not find 
your name in the spreadsheet, please contact the academic in charge of this coursework to get one. For the 
purposes of your report, please refer to this number as the “SID_No”. (Student Identification number) on your 
report clearly.
 Marks will be deducted if you do not show this information clearly on page 1.
The coursework report should comprise:
• A response to Task 1 (the Table and, at most, 2 further sentences)
• A response to Task 2 (the corrected function, <f_thrust.m>, and four numerical answers)
• A response to Task 3 (maximum 2 pages). This should include an explanation of how you 
applied an algebraic or iterative approach to finding the two equilibrium conditions and a 
description of each equilibrium condition comprising {𝐹9.5,𝜙9.5, w**2;9.5} and {𝐹14,𝜙14, w**2;14}. 
• A response to Task 4 which should comprise
- a legible view of the SIMULINK model (on a single page)
- an explanation in text of how you have applied the initial conditions
- the plot of q(t) vs. t.
• A response to Task 5 (1 page) comprising the SIMULINK Model and a plot of q(t) vs. t.
• A response to Task 6 (<2 pages) containing an explanation of how you determined the state-space 
representation for one condition (you need not repeat this explanation) and how you used the state-space 
representation to determine how q(t) varies with respect to time, t. Also a graph representing q(t) vs. t from 
each of the two calculations (Task 5 and Task 6).
• A response to Task 7 (<2 pages) containing the eigenvalues of the A matrix for the equilibrium condition at 
v(t)  14 and an interpretation of these. Also the graph of q(t) vs. t from the new SIMULINK model and a 
commentary on any connection between the eigenvalues and this graph. 
EQUATIONS DEFINING THE SYSTEM
The following equations define the behaviour of this system. In these equations, a dot above a quantity indicates 
differentiation with respect to time. The angle 𝜙 is measured in radians. 
(1) Define: w**8;(w**5;) ≔ w**7;(w**5;) − 𝐻 × 𝑐w**0;w**4;(𝜙) × 𝜙(w**5;)
(2) If w**8;(w**5;) > w**7;𝑐w**6;w**5;w**0;w**6;w**5;, 𝐹(w**5;) = (𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;𝑐w**6;w**5;w**0;w**6;w**5;) ∗ exp (−5(w**8;(w**5;) − w**7;𝑐w**6;w**5;w**0;w**6;w**5;))
Otherwise if w**8;(w**5;) ≥ w**7;w**3;𝑎w**5;Ү**;𝑑, 𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**8;(w**5;)
Otherwise w**8;(w**5;) < w**7;w**3;𝑎w**5;Ү**;𝑑 and 𝐹(w**5;) = 𝑎 × w**8;(w**5;)
2 × w**4;𝑖𝑔𝑛(w**8;(w**5;))
(3) 𝐽 × 𝜙(w**5;) + 𝑐 × 𝜙(w**5;) + 𝑘 × 𝜙(w**5;) = 𝐹(w**5;) × 𝐻 × 𝑐w**0;w**4;2
(𝜙)
(4) w**2; = 𝐻 × w**4;𝑖𝑛(𝜙)
THE COURSEWORK REQUIREMENT – 7 TASKS.
Task 1. Based on the equations supplied above, insert “Y” (for “yes”), “N” (for “no”) or “M” (for “maybe”) in 
each un-shaded box of the table below to identify the nature of each quantity that appears in the equations.
Quantity An Input ? A State 
Variable ?
A Rate 
Variable ?
An Output ? An Intermediate 
(Derived) Variable ?
A Parameter?

State whether there is any other state variable not mentioned in the table above. State also whether there is any 
other rate variable not mentioned in the table above. 
[10 marks]
Task 2. Correct the necessary lines of code present in the supplied function, <f_thrust.m> and present that 
function in your report. Then call that function directly from the MATLAB for four different wind speeds: 
{ 3m/s, 9.5m/s, 14m/s, 28m/s }. Report the results. 
HINT: To get the answer for 9.5m/s, type … f_thrust( 9.5) at the MATLAB command prompt. 
[10 marks]
Task 3. Without using SIMULINK, determine an equilibrium condition for the dynamic system at the wind 
speeds 9.5m/s and 14m/s. For each of these speeds, report the following steady values, 
𝐹9.5 = , 𝐹14 = 
𝜙9.5 = , 𝜙14 = 
w**2;9.5 = , w**2;14 = 
HINT: There is no “closed-form” solution here so you will have to apply an iterative approach of some sort. A 
manual iteration process is fine. You do not have to write any code to implement an iterative solution automatically 
or to use any built-in iterative methods within MATLAB. 
[15 marks]
Task 4. Now create a SIMULINK model of the system and run this model over a period of 500s with a constant 
wind-speed of 9.5m/s taking the initial conditions to be (0) = 0.15 rad and 𝜙(0) = 0. Plot q(t) vs. t . 
[25 marks]
Task 5. Modify the SIMULINK model from Task 4 so that the wind speed is now varying sinusoidally 
according to w**7;(w**5;) = 9.5 + 0.2𝑐w**0;w**4;(0.2w**5;). Change the initial conditions so that (0) =  determined from Task 3. 
Plot q(t) vs. t over 500s.
[10 marks]
Task 6. Create state-space representations of the system for each of the two different equilibrium conditions 
discovered in Task 3. In each case, treat v(t) as the only input and q(t) as the only output and report the matrices, 
{A, B, C, D} for both cases separately. For the case of v(t)  9.5 m/s, use these matrices to develop an alternative 
prediction for q(t) vs. t from Task 5. Create a plot containing two curves on the same graph representing q(t) vs. t. 
One of those curves should use the data from Task 5 and the second curve should use the data from Task 6.
[15 marks]
Task 7. Calculate the eigenvalues of the matrix A for the case v(t)  14 m/s and interpret what these 
eigenvalues tell you. Modify the SIMULINK model from Task 4 so that the input wind speed is now a steady 
14m/s. Set the initial conditions to be (0) = ( + ) and run this model for 500s. Once again, plot q(t) vs. t. 
Comment on any connections between what you see from the SIMULINK model output and what you found from 
the eigenvalues of matrix A. 
[15 marks]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:LCSCI4207代做、Java/Python程序代寫
  • 下一篇:代寫CIS5200、代做Java/Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品乱码av一区二区| 欧美aa国产视频| 国产亚洲欧美日韩精品一区二区三区| 伊人春色精品| 欧美禁忌电影网| 国产经典一区| 国产亚洲精品自拍| 欧美视频在线观看| 综合久久99| 成人久久网站| 色婷婷色综合| 黄色亚洲大片免费在线观看| 视频精品国内| 亚洲免费资源| 国产精品久久久久久妇女| 免费日韩视频| 国产综合网站| 国产精品自在| 亚洲永久精品唐人导航网址| 美女网站一区二区| 综合久久2023| 蜜桃视频一区| 免费av一区二区三区四区| 日产欧产美韩系列久久99| 国产九九精品| 亚洲播播91| 蜜臀av亚洲一区中文字幕| 99热在线成人| 第四色中文综合网| 亚洲自拍电影| 国产精品一区二区精品视频观看| 美女在线视频一区| 播放一区二区| 蜜桃av.网站在线观看| 久久亚洲图片| 一本色道久久综合亚洲精品高清| 久久影视一区| 美女一区二区在线观看| 国产精品毛片视频| 日韩av在线发布| 欧美成人精品午夜一区二区 | 中文字幕亚洲影视| 精品国产三级| 中文无码日韩欧| 亚洲欧洲av| 怕怕欧美视频免费大全| 国产精品片aa在线观看| 国产激情一区| 国产精品探花在线观看| 中文字幕日韩一区二区不卡| 国内视频精品| 欧美国产综合| 影音先锋日韩在线| 中文字幕免费精品| 国产精品视频一区二区三区综合| 91精品一区| 精品一区二区三区中文字幕视频| 国产一区二区三区视频在线| 国产精品1区在线| 999色成人| 欧美激情在线免费| 精品国产亚洲一区二区三区| 精品伊人久久| aaa国产精品视频| 奇米777国产一区国产二区| 久久激情婷婷| 午夜日韩av| 免费视频一区二区| 欧美男人天堂| 精品国产黄a∨片高清在线| 日一区二区三区| 国内不卡的一区二区三区中文字幕 | 国产综合色产| 亚洲视频播放| 日本欧美肥老太交大片| 亚洲人成在线网站| 欧美一区二区三区久久精品| 日本午夜精品一区二区三区电影| 欧美成人精品一级| 日本精品视频| 色爱av综合网| 99在线|亚洲一区二区| 日韩av自拍| 久久精品超碰| 国产精品亚洲欧美日韩一区在线 | 亚洲a∨精品一区二区三区导航| 欧美成人免费全部网站| 欧美日韩 国产精品| 婷婷精品在线观看| 特黄特色欧美大片| 久久xxxx精品视频| 欧美性www| 国产精品免费99久久久| 精品国产精品| 久久午夜影视| 日韩美女在线| 一级欧美视频| 精品在线网站观看| 另类图片国产| 国产日韩精品视频一区二区三区| 国产精品日韩精品中文字幕| 久久黄色影视| 成人一区二区| 日本成人在线不卡视频| 4438全国亚洲精品观看视频| 午夜日韩视频| 国产福利亚洲| 久久中文字幕一区二区| 不卡av一区二区| 日本在线中文字幕一区二区三区| 国产精品亚洲欧美日韩一区在线| 九色丨蝌蚪丨成人| 日韩av有码| 国产成人久久精品一区二区三区| 美女呻吟一区| 欧美高清视频手机在在线| 日本不卡视频一二三区| 久久精品论坛| av在线中出| 亚洲免费专区| 国产精品视频| 影音先锋亚洲电影| 久久精品免费一区二区三区 | 国产精品午夜av| 蜜桃精品视频在线观看| 亚洲国产激情| 天天久久夜夜| 国产69精品久久久久9999人| 999国产精品一区| 色琪琪久久se色| 国产精品日韩精品中文字幕| 91久久中文| 欧美日本三区| 91高清一区| 色999韩欧美国产综合俺来也| 亚洲天堂中文字幕在线观看| caoporn视频在线观看| 亚洲理论电影片| 午夜亚洲精品| 国产精品一国产精品| 在线视频精品| 国产精品一区二区精品| 国产亚洲成人一区| 亚洲老司机网| 美女精品在线| 亚州av日韩av| 三级欧美在线一区| 国产成人手机高清在线观看网站| 亚洲一区区二区| 国产精品一区二区三区av| 野花国产精品入口| 性欧美freesex顶级少妇| 鲁大师精品99久久久| 成人在线电影在线观看视频| 天堂99x99es久久精品免费| 免费在线观看成人| 久久久精品区| 先锋欧美三级| 久久中文字幕av一区二区不卡| 中文在线а√天堂| 国产亚洲精品美女久久| 亚洲少妇视频| 麻豆视频一区| 亚洲精品一级| 色999国产精品| 日本a级不卡| 免费亚洲婷婷| 久久av在线| 第四色在线一区二区| 色狠狠一区二区三区| 偷拍欧美精品| 综合干狼人综合首页| 色综合久久网| 亚洲不卡av不卡一区二区| 欧美在线高清| 午夜一级久久| 韩国女主播一区二区三区| 久久国产生活片100| 99亚洲一区二区| 99久久婷婷国产综合精品青牛牛| 国产精品一二| 久久亚洲欧洲| 美女av一区| 电影一区中文字幕| 日韩在线观看| 女生裸体视频一区二区三区| 日韩欧美中文字幕电影| 91成人在线| 性欧美暴力猛交另类hd| 亚洲不卡视频| 综合国产精品| 欧美不卡高清一区二区三区 | 日韩伦理一区二区三区| 日韩久久99| 日本久久精品| 亚洲成人三区| 岛国精品一区| 亚洲ab电影| 麻豆精品新av中文字幕| 久草在线资源福利站|